THESIS REPORT
Ph.D.

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),

the University of Maryland,
Harvard University, 1
and Industry Modeling and Control of Mixed
and Flexible Structures
by T.A. Posbergh
Advisor: P.S. Krishnaprasad
Ph.D. 88-4

Formerly TR 88-58



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1988 2. REPORT TYPE 00-00-1988 to 00-00-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Modeling and Control of Mixed and Flexible Structures £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland, The Graduate School,2123 L ee Building,College | REPORT NUMBER
Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 165
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



MODELING AND CONTROL OF MIXED AND FLEXIBLE STRUCTURES

by
Thomas Alfred Posbergh

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1988

Advisory Committee:

Professor Stuart S. Antman
Professor John S. Baras

Professor P. S. Krishnaprasad
Associate Professor Prakash Narayan

Associate Professor Mark A. Shayman



ABSTRACT

Title of Dissertation: Modeling and Control of Mixed and Flexible Structures
Thomas Alfred Posbergh, Doctor of Philosophy, 1988

Dissertation directed by: P. S. Krishnaprasad, Professor, Department of Electrical En-

gineering

The design of control systems for flexible spacecraft continues to be an important
problem in current and future space missions. Crucial to successful controller design is
accurate modeling of the underlying distributed parameter system. Current techniques
frequently fail to capture the nonlinear features of the dynamic behavior of flexible
spacecraft. From a practical point of view a closely related issue is the fidelity of
approximations in preserving the essential characteristics of the underlying distributed
parameter system.

This dissertation is concerned with distributed parameter models and rigorous ap-
proximations of the same as the basis for control system analysis and design. Specifi-
cally, we examine the generic case of a rigid spacecraft to which a flexible appendage
is attached. The flexible appendage is modeled using geometrically exact rod theory.
Equilibria for stationary and rotating configurations are computed and used as the
basis of a subsequent linearization which preserves the Hamiltonian structure of the
underlying system. These linearized models are the basis of the construction of the
corresponding transfer functions. The associated transfer functions relate tip position
and acceleration of the appendage to rigid body torques. In addition, stability of these
equilibria is investigated using the Energy-Casimir method.

Using the transfer functions of the linearized model, modern frequency domain
methods can be employed to do compensator design. In addition, we show that a rigid
n-body chain is a natural approximation to a limiting case of the geometrically exact
beam. Such an approximation provides the basis for finite dimensional compensator
design for our infinite dimensional system. The design, implementation, and actual

performance of such a compensator for an existing laboratory test fixture is discussed.
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CHAPTER ONE

INTRODUCTION

The control of mixed and flexible structures is a problem which is being confronted
more than ever before in the design of lightweight, high performance systems. By a
mixed structure we have in mind a multibody system, some elements of which are
modeled as flexible, while rigid body modeling suffices for the rest. Such models are
basic to the control of large, flexible spacecraft, high precision pointing and tracking,

and many robotic applications (see for example Johnson [1983]).

Flexibility becomes significant when the performance demands render inadequate
the modeling of a structure as one or more interconnected rigid bodies. The need to
acknowledge and account for the flexibility of a structure is a consequence of either
increasing size of the structure, or more stringent performance demands. In either
case, the flexibility introduces a spatially dependent component into the model. With
the introduction of this spatially dependent component we have moved into the realm
of distributed parameter models which are described by systems of partial differential

equations.

In the engineering analysis of these models current practice usually resorts to finite
element modeling. Finite element methods replace the partial differential equations
modeling the distributed parameter structure with a finite, although often very large,
number of ordinary differential equations. In effect, one approximates the continuous
structure by a finite number of interconnected elements with well-defined structural
dynamics. Consequently, the infinite number of modes associated with the distributed
parameter model will be replaced by a finite, although possibly very large, number of
modes. The purpose of this analysis is to compute the frequencies of the modes, and the
mode shapes, which approximate the partial differential equation. Current methods of

finite element analysis are described in many books (see for example the recent textbook
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of Hughes [1987]).

The large, finite element model used to describe the flexible spacecraft must gen-
erally be reduced in size before it can reasonably be used as a model for the purpose of
control system design. This further approximation is generally accomplished by retain-
ing only a small number of the modes. The task of choosing which modes to retain and
which modes to ignore is nontrivial, and the wrong choice will produce a bad design.
As a consequence, a great deal of research has been devoted to the problem of model
reduction (see for example the references in Balas [1982]). We note that this problem is
fundamental to the design of finite dimensional controllers for infinite dimensional sys-
tems. For discussion of these issues in the case of as they relate to spacecraft modeling
and control see also the thesis of B. Wie [1981].

Recent efforts that seek to perform the dynamic analysis of flexible spacecraft from
other than the perspective of modal decomposition include Baillieul and Levi [1983]
in which an examination is made of the exact equilibrium solutions of two specific
distributed parameter systems, and Krishnaprasad and Marsden [1987] in which the
model for a rigid body with an attached flexible appendage is formulated in the context
of Hamiltonian mechanics. See also the recent thesis of Sreenath [1987] for a discussion
of multi-body systems from the Hamiltonjan point of view.

For general mechanical systems the equations which model the dynamics are non-
linear. When the system is rotating, Coriolis and centrifugal forces can significantly
change the dynamics from what they were when the system was at rest. If we desire to
obtain a linear model, then we need to account for these additional forces and torques.
That such effects are significant has been recognized (see for example Kane, Ryan, and
Banerjee [1986], or Simo and VuQuoc [1987]).

An example we explore in depth in this dissertation is that of a rigid body to which
a flexible appendage is attached. Our model for the appendage is that of a geomei-
rically ezact rod. Such a model captures the important properties of the appendage,
in particular, for large deformations it is geometrically exact in allowing finite strain.
In addition, if the model is linearized about an equilibrium, it captures the important
physical effects such as stiffening. This is in contrast to more ad hoc methods which
can be found in the literature. One of the important themes of this dissertation is that

good models are necessary for successful control system design .
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Stability of flexible space structures has been studied in the past. Indeed, the issue
of attitude stability has been an important area of research since the very first artificial
earth satellites were placed into orbit. An early effort in the analysis of the stability of
flexible spacecraft was that of Meirovitch [1979], who attempted to use the Hamiltonian
as a Lyapunov function in testing the stability of a damped flexible spacecraft. More
recently Krishnaprasad and Marsden [1987] discussed an energy-Casimir method for
investigating the stability of a rigid body-flexible appendage configuration. This method
can be used to obtain qualitative information about the stability of a dynamical system.

Chapter two of this thesis is concerned with the modeling of flexible structures, in
particular a rod which is attached to a rigid body. The model we develop is based on
the concept of a geometrically exact rod. In contrast to the classical Euler-Bernoulli
model, a geometrically exact rod can be used to accurately model large deformations.
This is done by allowing finite strain in the rod model. Recent interest in these models
originates with Erickson and Truesdell [1958]. The notation we employ is that of Simo
[1985] which is based on an earlier, planar model of Reissner [1973]. For a very clear
exposition of the basic models of a rod see Antman [1972,1976).

In chapter three we linearize these models for a rigid body with an attached flexible
appendage. The rotating system can be formally expressed in the form of a linear control
system on an appropriate Hilbert space. (see for example Slemrod [1987], or Curtain
[1987]). For the case of a rotating configuration the associated operator can be written
as the operator of the nonrotating configuration perturbed by an operator arising from
the rotation. For these systems we can compute transfer functions.

Chapter four addresses the issue of stability of the rigid body and rod configu-
rations. In this chapter we apply the energy-Casimir method to establish Lyapunov
stability of a rigid body with attached extensible shear beam. We then introduce the
method of energy-momentum and use it to reproduce these results for the same model.

Chapter five addresses the control of the rigid body with an attached appendage
modeled as an inextensible, nonshearable rod. For this problem we can employ geometric
ideas to perform exact input-output linearization of the N-body approximation. In
addition, we examine the application of the Lo, techniques of Curtain and Glover [1986]

to our model.



CHAPTER TWO

ANALYTICAL MODELING

In this chapter we lay the foundation for the remainder of this thesis. Our main
objective is the derivation of mathematically rigorous models which describe the defor-
mation of a thin rod, especially in the case when the thin rod is attached to a rigid
body. Unlike an Euler-Bernoulli model, this model accurately describes large angle,
geometrically nonlinear deformations.

The theory of the bending of elastic rods has it’s origin in the investigations of J.
Bernoulli in 1691. The investigations of L. Euler into the elastica were done with the
encouragement of D. Bernoulli and were published as an appendix to Euler’s famous
book on the calculus of variations [1744]. Over the next century and a half investigation
continued and the theory was further developed by among others St. Venant, Cauchy,
Poisson, Kirchhoff, Clebsch, and Love.

In the last decade of the nineteenth century Duhem [1898] proposed the idea of
describing a body as not only a collection of points but also of directions associated
with the points (this idea of an oriented body is fundamentally geometric.) Shortly
thereafter there appeared the work of the brothers Cosserat [1909] in which this idea
was used in the representation of the twisting and bending of rods and shells.

Modern interest in rod theory (the special Cosserat theory) begins with the pa-
per of Ericksen and Truesdell [1958] who presented a modern, generalized version of
the Cosserat theory and developed nonlinear theories of strain for oriented curves and
surfaces. This was the start of a series of investigations. Notable contributions among
these are those of Cohen [1966], Green and Laws [1966], Green, Naghdi and Wainwright
[1967]), Whitman and DeSilva [1969], Antman [1970]. For a complete account of the
theory up to that time see Antman [1972, 1976).

More recent work has addressed the issue of numerical simulation and given rise to
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explicit formulations which are more natural in this regard. The formulation originally
developed by Reissner [1974] for the static case was generalized and extended te the
fully three dimensional case by Simo [1985] and Simo and VuQuoc {1986]. In this work a
major motivation is the accurate modeling by computer simulation of large deformations
of rods, plates, and shells. The model we discuss in this chapter is the model used by
Simo and his coworkers.

We should note that there exists with the theory of rods a fundamental dichotomy.
One can develop the theory as a true, one dimensional theory in the tradition of the
Cosserat brothers. Alternatively, one can view the theory as a special case of three
dimensional elasticity. For the relationship between these two perspectives we refer to
Antman [1976].

We begin our discussion with a general rod model, valid in three dimensions, and
derive a special case, that of a nonshearable, inextensible rod. This model can be
obtained in several ways, as a special case of a general theory, directly, or as the limit of
an N-body chain of rigid bodies. We restrict ourselves to the planar case in this model.
Futhermore, we consider such a model when the boundary condition is time varying
and described by a system of ordinary differential equations. Such a model arises in
describing a flexible appendage attached to a rigid body. In the limiting case, when
the masses and inertias associated to the rigid body go to zero we recover equations
which represent a generalization of Euler’s elastica. The linearization of this model in
a nonrotating frame is exactly the Euler-Bernoulli Beam equation with rotatory inertia
(Love, [1944]). The proper linearization of this model is fundamental to successful
control system design, for certain space structures.

In the last two sections of this chapter we turn our attention to the Hamiltonian
formulation of the rod model. Formulating the model in the Hamiltonian setting enables
us to employ powerful, modern geometric methods. Specifically, we will address the issue

of stability in the reduced phase space by these methods.

2.1. Rod Theory and Geometrically Exact Models

In this section we introduce the rod model to be used in this paper. In particular, we
are concerned with the dynamical model of a geometrically exact finite strain rod. The

model we use is based on the classical Kirchhoff-Love model as modified by Reissner to
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account for shear deformation (Reissner, [1972]). The notation we use is based mainly on
the work of Simo [1985]. In our analysis we attempt to adhere to the modern geometric

perspective as described in Marsden and Hughes [1983].

2.1.1. A Geometrically Exact, Dynamic Rod Model

A rod is a special case of an elastic continuum which physically occupies a region
of space. The reference configuration B of the rod is a manifold. We denote points in
this manifold as X. We assume that B is diffeomorphic to a domain of Euclidean space.
Ambient Space S is the region within which the body deforms. Points in ambient space
are denoted by x. A configuration ® is a mapping ®: 8 — S which carries the point
X in the body to the point x in ambient space.

The configurations of a rod in the ambient space IR® can be specified by a curve
which we call the line of centroids and the orientation of a cross section associated
with each point S on the curve. These are represented respectively by, (i) the mapping
¢:[0, L} — IR® which takes the line of centroids in the reference configuration into the
corresponding curve of the deformed rod in ambient space and; (ii) the orientations of
the cross sections as defined by the family of orthogonal transformations A : [0, L] —
SO(3).

We will use two bases in our subsequent development. The basis {E;}, which is
fixed in JR®,and is referred to as the material or inertial frame. The moving basis,
{t;} is fixed in each cross section. Its orientation can be related to the material frame
through the mapping A, according to the relation: ¢;(.5) = A(S)E;.

We assume the rod has a finite cross section given by the compact set A C IR*. Any
point in the reference configuration is mapped into ambient space by the configuration

mapping, ®: A x [0, L] — IR® where
®(85) = ¢(S) + &1A(S)Er + &A(S)Es, (2.1)

and (&1,62,5) € A x [0, L). This is illustrated in figure 1.
We call the pair (¢(S),A(S)) a configuration. In what follows we assume the
rod does not intersect itself, and undergoes no deformation of the cross sections. We

associate with any configuration the arc length defined by

a [*,0 2.9
o2 [Tigzenac (2.2)
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Cross Section
ug(s,t)
Line of Centroids

a | S -
» >
e, ul(sat)

¥(s,t)

Figure 2.1. The Geometry of the Rod Model.

The arc length is used in the spatial description of the dynamics of the rod.
As part of the kinematic description of the deformed rod we need to determine the
evolution of the basis {t;(S5)} as we move along the line of centroids. In this case we

define the skew symmetric tensors fields, @:[0, L] — s0(3) and €2:[0, L] — so(3) by

dA(S)

a(s) = A7(5)24E) o) = L)

—=IAT(S). (2.3)

Here, we use the standard Lie algebra isomorphism ": R® — s0(3), to denote the skew
symmetric tensor & € so0(3) associated with the axial vector w € R®. One has w = AQ.

S

A motion of the rod is a curve in the configuration space assigning to each (S5,t) €
[0, L] x Ry the pair (¢(S5,1),A(S,t)). Associated with a motion we have velocities and

accelerations. We define the material velocity field as

visn? (450, 2450

7
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We can use this to associate with any point of the rod a material velocity vector. Thus,

from expression (2.1),

0B(S,1) _ 0e(S,t) . GA(S,1) 0A(5,1)
a ot & o Dt

Since A(S,t) € SO(3) we define 1: [0, L} x IR — s0(3) and W: [0, L]x IR — s0(3)

by the expressions

(2.6)

aA(s 1), aA(s )

W(S,t) = AT(S, )= w(8,t) = —22AT(S,1). (2.7

We call the skew symmetric linear map % the spin of the moving basis {¢;(5,t)}. Its
axial vector w is the vorticity associated with the moving basis. Observe that w = AW,

We also define the material acceleration field as

2
A8 (55 25, 25
thus . ) 9
Pe(5,1) _ ¢(S1) | FASY) o DAY g (2.9)

ot ot ot ot2
Observe that from the point of view of the three dimensional theory, the deforma-

tion gradient (a two-point tensor) is defined by

o [04(S,1)
F‘[ a5

—t3+'wx(x—¢)]®E3+A. (2.10)
Next we proceed to introduce the equations of motion.

We define the two spatial quantities, the resultant contact force per unit of reference
length, n(S5,t), and the resultant torque per unit of reference length, m(S,t).

Making use of the balance of momentum equation of the three dimensional theory
(see Marsden and Hughes [1983]), one can derive the equations of balance of linear and

angular momentum for the rod. In the spatial representation one has

Bv Bn

PASL as (2.11)
dw dm  0¢
I,— Ty +w x Iw 35+5§Xn+ (2.12)

In the above, p4 is the mass density of a cross section, and I, is the time dependent

inertia dyadic cross sections. One has the relations
L
I, = / PEatpdS[16ap — Ea ® Ep| ; I, = AJ,AT (2-13)
0
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where J, is the time independent inertia dyadic in the convected (body) representation.
In addition, 7 is the vector field of external forces, and 7 is the vector field of external
torques. The quantities » and m are internal forces and moments arising from the
potential energy function and we refer to them as stress resultants.

By considering a virtual work type argument we can compute the strain measures
conjugate to the stress resultants and stress couples. One can show that the stress power
given by

/ P:FdIdS = N.-T'+M-:QdS (2.14)
Ax[0,L) [0,L}

where P is the Piola-Kirchhoff stress tensor, N, M are convected stress resultants
defined as
N=ATn and M= ATm, (2.15)

and I', © are convected strain measures defined by

T= AT% -~ E; and Q=ATw. (2.16)

We next consider global constitutive equations for the elastic case and the pure
mechanical theory. We assume the existence of a free energy function ¥(S5,v,w,A)

where -~y = 5%4), such that

%Y T Ow’

By postulating that these equations are frame indifferent (as they must be); i.e.

and (2.17)

invariant under the left action of the Euclidean group of spatial isometries, we obtain
the representation 1 = ¥(AT~, ATw). Hence it follows that

ov ov
N = T and M= 30 (2.18)

Linear constitutive equations consistent with the above invariance requirements are

furnished by the uncoupled linear systems
N= CN(P -To) and M=Cn(22 - ) (2.19)

Here Cy, and C)ps are symmetric, positive definite matrices. One typically assumes
that Cn, and Cps are diagonal with constant coefficients. The assumption of an un-
coupled quadratic expression for the material stored energy function ¥(S§,T, ) is the

counterpart of the Saint Venant — Kirchhoff model of three dimensional elasticity.



2.1.2. Admissible Variations

The configuration space of a rod is a differentiable manifold. Subsequently, we will
need to take variations of the configuration at which time the nonlinear nature of the
manifold will determine the admissible variations.

From an abstract point of view, according to the preceding discussion, the config-

uration space C is the set of mappings ¢ such that
C2{d =(¢,A)|[0,1] — IR® x SO(3)}. (2.20)

Thus the configurations take values on the differentiable manifold IR® x SO(3). Let so(3)
be the Lie algebra associated with the tangent space to SO(3) at the identity. Elements
of so(3) are the skew-symmetric matrices with the standard matrix commutator as Lie
bracket. Recall that we can associate with any element 60 € so(3) a vector 60 € IR
such that for any h € IR® we have 66 h = 60 x h. Since the tangent space at A € SO(3)
is given by TaSO(3) 2 {6OA | 6O € s0(3)}, the space of admissible variations at the
configuration ® = (¢, A) is given by

TgC = {(§¢,80A) | (64,60): [0,L] — IR’ x s0(3)}. (2.21)

We call ¢, and 66 admissible variations. We define a perturbed configuration,
&, = (¢¢, A), for € > 0 by using the exponential map and letting

¢e(5,1) = ¢(5,1) + €69(5,1), A(S,1) = exp[e0]A(S, ). (2.22)

The above are used in computing the variational derivatives associated with the system.

A more complete discussion of these matters is found in Simo & Vu-Quoc [1986].

2.2. A Special Case — The Shear Beam Model

An illutrative for the previous development is provided by the case of a rigid body
to which a linear extensible shear beam is attached. Our model for the appendage is
sometimes referred to as a string model. Such a model is discussed in Krishnaprasad &
Marsden [1986]. Here we show how the dynamics can be derived using the rod theory

discussed in the previous section.
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For the linear extensible shear beam we assume that the stored energy function is

of the form,

Jdr Or

(2.23)

where r is the configuration variable in the convected representation, r = AT¢. Note
that in the case of the linear extensible shear beam A(S,t) = A(t), since there is no local
freedom of rotation for the cross sections. The symmetric, positive definite operator K
corresponds to the matrix of coefficients of elasticity in the linear theory. In this case
we assume K = diag(FA,, FA;, GA).

In addition we assume that there is a rigid body fixed to the base of the appendage
with convected inertia dyadic J. We will assume that the mass of the appendage is small
with respect to the mass of the rigid body, consequently we implicitly assume that the
center of mass of the system coincides with the center of mass of the rigid body. We
will assume that the entire configuration is rotating with convected angular velocity
W = J~1p, here p is the convected angular momentum vector of the rigid body.

From the definition of r, we have upon differentiating

.

¢ =AW xr+ ) (2.24)

where W is as defined above. If we define m = p4AT¢ as the convected momentum

density then the time derivative of r in the convected frame is
t=p m+rxJIlp. (2.25)
Similarly, if we differentiate the the convected momentum density we get
¢ = Ap;'(37'p x m + m), (2.26)

while from our definition of the stored energy function ¥ we get

ov or
— = _— 2.27
5 = M55 (2.27)

Thus, substitution into (2.11) yields

&r

358 (2.28)

A(th — m x J-1p) = AK

11



or
32

I'p+ K—
m=m X P+ 552

(2.29)

in the convected representation.
Finally, we have from (2.12) an expression for the moment about the origin. In
this expression we have m = 0 from our definition of ¥. Thus, for the right hand side

of (2.12) we compute

Oom 8qb &*r
35 T3¢ X0 = Al xKge)

To include the rigid body attached to the base we integrate (2.12) from 0 to L, picking

(2.30)

up the rigid body dynamics as a boundary term. Thus in convected coordinates one
finds

s px3p=— [ (rxKLEyds
p-pxJp=- (r>< 357) (2.31)

where we have neglected the effect of the inertia of the appendage.
Thus we conclude that the equations of motion for the rigid body plus linear ex-

tensible shear beam are, in convected coordinates

b=pxJlp— i K82 ds 2.32
p=p p o(r>< 652) (2.32)

f=plm+rxJI7p (2.33)
&%r

-1
m=mxJ p+K85

(2.34)

We will return to this example again when we discuss Hamiltonian methods.

2.3. A Special Case — A Nonshearable, Inextensible Rod

In this section we examine the limiting case of the rod model when the shear and
axial deformation are prohibited. Physically we can think of a material in which the
deformation arising from shear and axial forces is negligible, the material is inelastic
with regard to those components of stress. We will show that such a rod represents a
limiting case of a chain of rigid bodies in ambient space.

There are at least three ways in which we can arrive at the dynamical equations for
this rod model. The first method is to simply prohibit any deformation due to shear or
axial force. In this case we postulate the strain arising from this stress as zero and then
proceed to derive the associated dynamical equations from the balance of momentum

principle.
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The second method can be employed when the stress and strain are linearly related
by constant coefficients. The constitutive model in this case is related to the Saint
Venant—Kirchoff model of three dimensional elasticity and is typically restricted to small
strains. In this case the coeflicients, sometimes called elasticity coefficients, can be
treated as parameters and those associated with the shear and axial stress allowed to
go to infinity. The resulting equations will reflect the inelasticity in the shear and axial
directions. The equations of motion are then determined from the balance of momentum
equations.

The third method which could be employed involves treating the material of the
rod as a directed media or a Cosserat continuum. We have not used this approach
explicitly in our derivation, but the interested reader is directed to Antman [1972], for
an account of these types of material.

In the remainder of this section we derive the equations of motion of a rod when
the shear and axial stresses produce no deformations in the rod. We conclude with the

special case of a rod which is restricted to deform in the plane.

2.3.1. Derivation of the Equations of Motion

In this section we derive the equations of motion for the rod model when there is no
axial or shear deformation permitted. In an earlier section we introduced the expressions
for the strain. Qur constraint on strain therefore corresponds to I'(S,t) = 0.

Recall the expression for the strain, T’ in (2.16). The postulated strain condition
allows us to relate the orientation of the {t;} frame fixed in the cross section to the line

of centroids ¢. Thus,
99
s

This equation introduces a constraint which effectively reduces the number of indepen-

= A(S,1)E;. (2.35)

dent quantities needed to describe the current configuration.

From the three dimensional material form of the balance of linear and angular
momentum we can obtain two equations in terms of the resultant force n(S5,t) and the
resultant moment m(S,t). With no external forces or torques, these take the form (in

the spatial representation)

v 0
= — 2.36

13



, 0 0o
Lw+wxI,w= 5™ + 75 <™ (2.37)

These correspond to equations (2.11) and (2.12) in the previous section. We can obtain
an expression for ¢ in (2.36) by integrating (2.35) and then differentiating with respect

to time twice. Thus

s

#(5,1) = / A(o1,1)Es dov, (2.38)
0

and differentiating

d¢ 59

- /0 S A(01,1) B doy, (2.39)

62¢ S 82

_827: A E-t—zA(O'l,t)E:;dO'], (2'40)

from which, upon substitution into (2.36), we get

on 5 9
5—8-21)/1 A —672-A(01,t)E3d0’1. (241)

Integrating this from 0 to .S and substituting into (2.37) along with (2.35) we have for
the angular momentum

gm

S o1 82
o+ A(S, s X (n(0) + /0 o4 /O S A(02,1)Es doydon),

(2.42)

ILw+wxI,w=

where we have used the initial condition on n.

Equation (2.42) describes the dynamics of the rod in terms of the orientations of
the cross sections. (Recall [A(S,?)A(S,)]w(S,t) = 0). We were able to eliminate the
equation for the line of centroids by the algebraic constraint (2.35). Physically, what
we have done is remove some of the degrees of freedom which the cross sections had
with respect to the line of tangent to the line of centroids. We note that in this case the
convected basis corresponds to the moving basis of Simo [1985). In fact, the normal to

the cross sections is now in the same direction as the tangent to the line of centroids.

2.3.2. An Example, the Plane Case

We can now specialize the results of the previous section to the case where the rod

is restricted to lay in a plane. In this case there are two linear displacements, u; (.5, 1),
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the displacement from rest along Ej3, and uy(S5,t), the displacement along E; and one
angular variable a(S,t), the tangent to the line of centroids. The line of centroids is

described by
B(5,) 2 (S - u1(S,8)Es + ua(S, 1) En, (2.43)
while the orientation of a cross section is described by
cosa 0 sina
A(S,t) = 0 1 0 |. (2.44)

—sina 0 cosa

Using the expressions (2.16) for the strain measures we find,

_ 0u1 . 61.&2

Ii=-(1+ 35 )sina + B o8 (2.45)
_ 61.14 8“2 .

Fg ——(1+—5—S—)COSQ+-8—SSIIIQ, (246)

and with I';y = 0, I's = 0 we have

3u1 . _ 3112
5—5—)’ sina = - (2.47)

cosa = (1+

We will assume m(S5,t) = EIS—‘S"., so the resultant moment is proportional to the
curvature of the rod. Note that F is the modulus of elasticity and 7 is the cross sectional
inertia. In addition we assume J, is diagonal with the second diagonal element J, ;.
Since the deformation is in a plane the only nonzero element of w is the second and
this is exactly @. Combining this all into equation (2.42) we find that the dynamics of
the rod about the axis along E; is described by

0ta s 73 da\® . 0%
1—8—5,—2— + sma/0 pA/(; (cosa (E—) - sin QW) dogdo
S o 2 2 2
1 ) da 0“«a Fa
+ cosa/0 pA/O (—sina (—a—t—) + cos a‘5¥2—)d0'2d0'1 = Jp,22-522—. (2.48)

If we linearize this equation we can recover the classical Euler-Bernoulli beam
equation with rotatory inertia. Note that in this case cosa = 1, sina = a. Thus,

the above becomes

S o 2 2 2
1 gca 0o a
i — = _— 2.49
/o /o paga dordor+ Bl 55 = Jon g (2.49)
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Next we use the linear approximation a = %2, and differentiate once with respect
to S. Note that the inner integral disappears when we integrate the substituted term

while we get rid of the outer integral when we differentiate. The result is then

62U2 84’112 841!2
Page B Gen = e papgr (2:50)

which is exactly the Euler-Bernoulli beam equation with rotatory inertia. !

2.4. An Alternative Derivation

In this section we discuss in detail an alternative derivation of the equations of
motion for a planar, inextensible, nonshearable rod, including the case when the base
of the rod is attached to a rigid body. The approach is an application of Hamilton’s
principle, a variational principle based on minumizing an integral of the Lagrangian.

For the case we consider, the appropriate kinetic and potential energy will be

K = 3pa®(0,t) + 2 M(2(0,t) + 52(0,1))

L
+/0 sL,6%(S,) + 3pa(82(S,8) + (S, 1)) dS,
L
U= / LEIa"(S,1)dS.
0

Here Ips is the inertia of the rigid body, and M is its mass. We assume its center of
mass coincides with the base point of the rod. For the rod we assume I, is the rotatory
inertia while p4 is the mass per unit length. A point on the line of centroids of the rod
is located with respect to an inertial frame by the coordinates z(.5,t), and y(S,t). The
tangent to this point makes an angle a(S,t) with respect to the inertial coordinates.

Thus

s
z(9,t) = z(0,t) + / cos(a(o,t)) do,
0

s
y(S,t) = y(0,t) + /0 sin(a(o,1)) do.

! This is exactly equation (5), p. 430 of Love [1944]
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z(S,1)

Figure 2.2. A Planar Rigid Body and Rod Configuration.

2.4.1. A Free, Planar Rod in Space
We assume the rod satisfies the conditions of the first section. The equations
of motion are obtained by Hamilton’s principle . We begin with the integral of the

Lagrangian as in the first section.

t L s
I :/ {/ %Ipdz + %PA(S&(O,t) -—/ Sin(a)d da-l)2
to 0 o

s
+ 5pa(9(0,8) + /0 cos(a)adoy)? — LTEI(a)? dS} dr, (2.51)

and consider test functions of the form a(S$, ) + e5(S, t), and subject to the boundary
conditions that arise from Hamilton’s principle, i.e. 7(S,t0) = 7(S,t1) = 0. We also
consider the boundary conditions at § = 0, or $ = L. We note that for a free end,
7(S, t)|s=0,L is arbitrary, as are z(S,t)ls=o,L, and y(S,t)lS=o’L. For a pinned end

a:(S’,t)|5=0 L= 0, and y(S,t)lS___o L 0 with n(S, t)ls=0 L again arbitrary. Finally, for

»

a clamped gnd z(S, t)ls___0 L= 0, y(S, t),s=0 L= 0, 7(S, t)ls=0 L= 0

For the first term in the expression for I we can take the first variation and then

17



perform and integration by parts in ¢

ty pL
06 :/ / I,andSdr
to 0
L tl t]
:/ an -/ LéndsS dr
0 to to
t; L
= —/ / I,andSdr (2.52)
to 0

where we have used the boundary conditions 7(S5,t) = 0, and 7(5,¢;) = 0. We have

also interchanged the order of integration twice.
For the fourth term we again take the first variation and this time perform inte-

gration by parts in space.

014

t1 L
- / Eld'y' dSdr
to Jo
t1

L L
/ —EIad'n| + / Eld"ndS dr (2.53)
to 0 0

In this case we observe that 7(0,t), and 7(L,t) maybe arbitrary and consequently
—FEIa'n need not be zero at the boundary.

For the remaining two terms we proceed with a somewhat more tedious calculation.
t L s s
oI, = / / pa(£(0,7) — / sin(a)é dal)(/ — cos(a)na — sin(a)ndoy)dS dr
to JoO 0 0

= /t:l /OL pa <:i:(0,1') - /ossin(a)d dal)(/os -—%(sin(a)n) doy)dSdr.

Integrating by parts in ;

= /OL pA (a‘:(O,‘r) - /05 sin(a)a dal) (/05 —sin{a)ndoy) .

- /OL /t:l PA (:’é(O, T)— /Os(cos(oz)o'z2 + sin(a)d) dol) (/05 —sin(a)ndoy) dS dr,
= ,/oL /tl PA (:'15(0,7') - /Os(cos(a)éz2 + sin(a)d) dcrl) (/Ossin(a)ndal)dS dr,
to

t1

where we have used 7(0,) = 7(0,t;) = 0. Integrating by parts in §
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L
0

- /: /0 s (5(0, - /0 " (cos(a)a? + sin(a)é) dag) doy( /0 " sin(a)don)

L S 28
- / {/ pAa(2(0,7) + / (cos(a)d2 + sin(a)@) dos) 01} sin(a)ndsS dr.
0 o 0
(2.54)

We can proceed in an analogous fashion to compute the variation associated with the

third term

615 = l:l /05 PA (37(0,7') + /001(— sin(a)a? + cos(a)d) da2> dal(/os cos(a)ndoy)

+ /OL {/OSpA (y(O,T) + /001(— sin(a)&® + cos(a)d) dO’g) 01} cos(a)ndS dr.
(2.55)

L
0

Since the first variation of I must be zero, combining the above we find
tl S g3 S
0= / {(/ PA (:E(O,‘r)-i-/ (cos(a)é? + sin(a@)@) d0'2) dal(/ sin{a)ndoy)
to 0 0 0
S o1
- (/ PA (g’j(O, )+ / (= sin(a)é® + cos(a)d) d02> doy)
0 0

L

'(/OS(COS(a)n dal)} — Elo'n

0

+ /OL{-—I,,& ~ sin(e) (/OSpA(:E(O,T) - '/Oal(cos(a)c’y2 + sin(a)é) d0'2)0'1>

S o1
+ cos(a) (/0 pa(y(0,7)+ /0 (- sin(a@)é? + cos(a)d) das) al> + EI a"}ndS dr.
(2.56)

/smallskip The requirement that (2.56) must be equal to zero along with properties of
n and the assumptions of continuity can be used to find the dynamics of the rod along
with the end conditions. We first note that since 7 is arbitrary for the above to hold

and the conditions of Hamilton’s principle to be satisfied we require

L o1
0 = —sin(a) (/o pa(2(0,t) — /0 (cos(@)é? + sin(a)d) da2)d01)

L o1
- cos(a) (/0 pa(H(0,t) + /0 (—sin(@)a? 4 cos(a)d) doy) d01> ,
0<8§<I, (2.57)
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EId'(0,t)n(0,1) = 0, (2.58)

ElId'(L,t)n(L,t) =0, (2.59)

s
0 =-1,6 — sin(a) </0 pa(£(0,1) / (cos(a)é? + sin(a@)d) dag)dm)

+ cos(a) ( pa(#(0,1) + /”1(_ sin(a)&® + cos(a)é) doy) d01> + EId".

0<S<L (2.60)
If we set S = L in (2.60) and use (2.57) we find
0=~I,a(L,t)+ EIo"(L,t), (2.61)

this equation describes dynamics of the rod at the tip. What remains is to specify the

boundary conditions, there are two cases:

2.4.2. A Fixed-Free, Planar Rod

In this case we demand z(0,t) = 0, y(0,t) = 0, and «(0,t) = 0 at the base of the
rod. This represents the base being fixed in space and not being allowed to rotate.

At the tip of the rod there remain two conditions to specify. The first is found by
recalling that for the free end, 7 is arbitrary. Thus from the condition at S = L (2.58),
we require o’(L,t) = 0 to satisfy Hamilton’s principle. The second condition is (2.61).

Physically this equation corresponds to the balance of force and torque at the tip

of the rod.

2.4.3. Hinged-Free Rod

Again we demand that z(0,t) = 0, and y(0,t) = 0 as in the fixed-free case. In
this case however the base of the rod is free to rotate, hence 7(0,t) is arbitrary. As a
consequence, in order to satisfy (2.59) we require a,; (0,t) = 0. The free end is the same

as in the fixed-free case.
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2.44. Rigid Body and Rod

In the preceding section it was assumed that (0,t), and y(0,1) were fixed. In this
section we will remove that restriction and assume that a rigid body is attached to the
point (z(0,1), y(0,1)). In what follows the rigid body is assumed to have mass M, and
moment of inertia Ins. We will also put a torque, u(t), about an axis through the center
of the rigid body.

The integral of the Lagrangian for this problem is

ty
I= / 36 (0,7) + LM(%(0,7) + §2(0,7) - a(0, r)u(r) dr
to
t; L S
+ {/ 11,6% + %pA(:b(O,T)—/ sin(a)d do )?
ty 0 0
s
+ 3p4(9(0,7) + / cos(@)adoy)? — LEI(a')? dS} dr. (2.62)
0
We consider test functions of the form o(S,t) + en(S,t), as before and in addition
2(0,8) + en®(t), and y(0,) + en® (1),

The variation associated with the rigid body is computed,

ty
81 = / Taeé(0, 7)(0, 1) + M(0, 7)7®) + My(0, 7)7™ — u(r)n(0,7) dr,
t

]

- /t @0, 7m(0,7) = MEQ, Ty — M(0, ) w(r)n(0, 7) dr{2.63)

where we have preformed integration by parts and used the boundary conditions.
The expressions for 61y, and 814 remain the same. The expressions for 613, and 615

now have additional components associated with z(0,1), and y(0,¢). In particular,

ty L S
17 = [ [ pa(a(0,m) [ sin(a)adon) i) ds ar
to 0 0

t1 L s
= —/ / pa(£(0,7) - / (cos(@)é” + sin(a)é) doy ) 7™ dS dr. (2.64)
to JO 0
Thus we get for the variation of the second term

t) L N
60l = —/ / pa(3(0,1) - / (cos(@)é? + sin(a)é) doy)n® dS dr
to 0 0

L
0

n t:l /OS pa (5(0, T)— /oal(cos(oz)c')z2 + sin(a)é) daz) dal(/ossin(a)n doy)

L s o
- /0 {/0 pa(2(0,7)+ /0 (cos(a)d? + sin(a)é) dos) 01} sin(a)ndS dr.
(2.65)
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We can proceed in an analogous fashion to compute the variation associated with the

third term
ty oL S
61§y’=/ / pa(9(0,7) + / cos(@)d doy) ¥ S dr
to 0 0

- _ /tl /LPA (5(0,7) + /S(—sin(a)d2 + cos(a)d) doy ) ¥ dS dr. (2.66)
to Jo ’ 0 1 (2.

Thus we have

11 L S
8§13 = — / / pa(i(0,7) + / (- sin(a)a? + cos(a)d) dal)n(y) dsdr
to Jo 0

L
0

+ /:1 /05 oA (37(0,7) + /0»01(_ sin(@)é? + cos(a)d) dUz) doy (/(;S cos(a)ndoy)
+ /OL {/O‘Sp,g (g’}(O, )+ Aal(— sin(a)a’ + cos(a)d) d02> 01} cos(a)ndS dr.
(2.67)

From the above, with 7(®)(¢), n(¥)(¢), and n(S,t) arbitrary we have the following
conditions for Hamilton’s principle to be satisfied. Associated with the variations in

z(0,¢), and y(0,1) we have
L s
0 = Mi(0,1) +/ pa(i(0,1) - / (cos(@)é* + sin(@)&) doy) dS, (2.68)
0 0

L S
0 = Mij(0,1) + /0 pali(0,1) + /0 (- sin()é? + cos(a)d) doy) dS.  (2.69)

We can recognize this as the sum of reaction forces in a system with no external forces

acting on it. As before, again we have

L oy
0 = —sin(a) (/0 pa(Z(0,t) - /0 (cos(@)é? + sin(a)a) doy) dcrl)

L o1
— cos(a) (/0 ea(H(0,t) + /0 (- sin(a)é? + cos(a)a) dos) dal) ,

0<S<I, (2.70)

condition (2.58) now becomes
EIa'(0,t) + Ingé(0,1) = u(t), (2.71)

while (2.59) remains the same
EI/(L,t) = 0. (2.72)
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Again we have the rod dynamics
S (251
0 = —I,& — sin(a) / pa(£(0,t) — / (cos(a)d? + sin(a@)d) doz) d01>
0 0

S o
+ cos(a) (/0 pa(§(0,t) + /(; (—sin(a)a? + cos(@)a) das) dal) + EId",

0<S<L. (2.73)

If we divide the conditions containing the mass M by the mass then let M — oo
we find £(0,t) = 0, and y(0,t) = 0. However we let Ips remain fixed. Our equations
now correspond to a rod with a rigid body at one end pinned in space. If we let Iy — 0
we recover the equations for a hinged rod. If we let In; — oo we recover the equations

for a clamped rod.

2.5. Continuum Models as Limits of N-Body Chains

The planar, inextensible, nonshearable rod dynamics we have considered can also
be thought of as the limiting case of a planar chain of rigid bodies. In this section
we will consider a planar chain of rigid bodies and show that it has in the limit the
continuum model of the previous two sections. Consequently, in approximating the
continuum model there is a natural approximation which can be physically interpreted

as a chain of N-rigid bodies.

2.5.1. Formulation of the Equations of Motion

For a chain of N rigid bodies we assume that the distance between the two hinge
points at opposite ends of the i** rigid body has length r;. We define the centerline of
arigid body as the line connecting the two hinge points. We assume the center of mass
of the i rigid body lays on the centerline at a point ¢;7; from the lower hinge. This
rigid body is characterized by its mass m; and the moment of inertia about it’s center
of mass, I;.

The N rigid bodies are connected together to form a chain (see figure 2.3).

We call the first rigid body the base link. The i** hinge is the hinge which connects
the i** rigid body to the (i + 1)* rigid body. The elastic hinges produce a torque

linearly proportional to their angular displacement by a constant k;. We assume the
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Figure 2.8. A Chain of N Rigid Bodies.

total length of the chain is constant, we denote it by L. Similarly, we assume that total
mass of the chain is constant and we denote it by myq.

The configurations of the chain generally lays in R3. However, by restricting our
attention to the planer case our configurations lay in R?. If { E; } denotes an inertial
reference frame then the center of mass of the i** rigid body will be located at z;E; +
yiE2 + z;E3. By a suitable choice of { E; } we have 2z; = 0, ¢ = 1,..., N. In addition
each rigid body is characterized by an angle ¢; which is the angle the centerline of the

i** rigid body makes with the vector E;.

The relationship between the positions of the center’s of mass of the rigid bodies

in the chain will be described by the two constraint equations for 1 < j < i< N

zi = fij($iy .y $j) + 7 (2.74),
i = 9ij(iy - $5) + Y; (2.75),
where we have fij = 0,2 S ] and gi; = 0,1 S ] If we denote fi = ft'jlj=1 and

gi = gijlj=1 then the velocity and acceleration of the center of mass of the i*" rigid

body can be expressed in terms of that of the 1*! rigid body and the angles ¢1, ., ¢5;
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&= _f¢;j + &y, (2.76)

j=1a¢f
L e O L =Bfiy
= 9 g GG+ i, 2.
& ;;8¢ja¢[¢]¢z+;a¢j¢1+xl (2.77)
Vi = i g‘qi% + 91, (2.78)
i=1 9%
Z}ij iy +Zag’¢ + (2.79)
et a¢ a¢ j P 7 1 .

The total kinetic energy of the chain is the sum of kinetic energy arising from the

linear and angular motion of each rigid body

N
Z% &; +y,)+§: 114}, (2.80)

The potential energy in the chain arises from the deformation at the hinges. The total
potential energy in the chain will be
N
U= 3ki(dir1 — &), (2.81)
i=1
where we require ky = 0 and leave ¢n41 unspecified. Combining the above in the

Lagrangian £ = T — U and using the expressions for & and y we have

ymi { Z o4 ¢a +#1)" + Z aqsz b+ Z/l)z}

N
Z% Z $hi(Big1 — 6:)%, (2.82)

t=1

N
L=

=1

Next we use Lagrange’s method to obtain the equations of motion. There are
N + 2 independent variables needed to specify the equations of motion. These are
z1,Y1, 1, ..., &N These arise as follows: From the three variables, z;,y;, ¢; associated
with each of the rigid bodies, We can eliminate 2N — 2 variables by the constraints

(2.74)-(2.75) for j = 1. Thus the N + 2 dynamical equations of motion are given by:

ac oL
0= — _— k=1,...,N, 2.83
dt (3¢k) 0k ( )
d [8cC oL
_ dad) 2.84
0= dt (8z1> (91‘1, ( 8 )
d (0L oL
0o 4 _oL 2.85
dt (0?/1) on (2.85)
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The first equation describes the dynamics of each rigid body in the chain with respect to
the base link while the remaining two describe the position of the center of mass of the
base link with respect to inertial space. Note that in our formulation the configuration
of the chain is not related to the center of mass of the chain but instead to the position
of the base link center of mass.

We now proceed to compute the first equation,
oL _ ENZ Z 3f1 NJA
Do L a6,
0 3 s
Zm, Z 234 298 +ZI¢, (2.86)

Next we differentiate this quantity with respect to time, note that each ¢; depends on

time, thus
dor & N i oy af,-
'd—g— ; 2;8@%"%”2 %
3fz

: K3 1 al
+Zmz{<zza§5¢ ¢J¢+Zag Wog,

J=1£=1

+(Z b Y et b}t b (290

Next we differentiate with respect to the ¢;,
N i i
oL afi ; zfz &
50, = 2™ 5g,%+ 0 X 50 ag,
0g; -
+ Z mt Z QS] 1) Z a¢‘7

i=1 i=1
+ kk+1(¢k+1 — ¢x) — kk(¢>k - ¢k—1)- (2.88)

Combining the above to form Lagrange’s equations we obtain N equations of mo-
tion.
i f. af, afi
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af, Lo fi g
* (Z - 56; TRL

‘ a, a, a,

]lll

3:

t : 8 1 1 : 8 z ‘

+ kk+1(¢k+1 ¢>k) - kk(¢>k - ¢>k—1)- (2-89)

Note that we can cancel several terms in the above to get

L af, af, af,-
0=, md( ¢¢+
af;
+<z qu, azw )
.7
A 6gz 891 agz
m; { ( ¢¢+
Z ,21;%(% " E oz

+(Zag1¢1 1)25% e } + L

+Zm(zaf’¢ P 00y, O
1 ] I)Ea¢ a¢e¢l+zlmt(zl a¢J¢J +y1); 8¢]a¢£¢£
1= ]= =
+ kk+1(¢k+1 — k) — kir(dr — dr-1)- (2.90)

We can rewrite these in the form

dfi 0f; dg; 09;
Z {Z(B—Jﬂ-’_&z& o )¢j}

i=1

8 f: 6ft 3291’ 69, .
+ E my {; ;(a(ﬁ_ﬁbl a¢k 8¢j¢£ 3¢k )¢]¢[}
+ Lidr — ki(bks1 — Sk) + kro1(Bk — Pr—1)

oo (08l 522} ao

In addition we have the two equations which describe the position of the base link.
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For the dynamics resolved along the z axis,

N

oL af;
0z1 ; ‘(Z 8(;5] ¢J +21) (2.92)
d oL N L a i p) 7
dt 0dy 2 m(d 26, §¢ $ide + (Z L ¢J +#1). (2.93)
i=1 j=14=1

Since there is no potential energy due to the linear displacements we have 79@5% =0 and
the last expression above describes the dynamics. If we proceed in a similar fashion

along the y axis we find from the above

L 92, Py 5
Miot1 = — Z Z Z 2% gd) ¢J¢e + Z f (2.94)
i=1¢£=1
S 2 m3 S 52 e b + z "’g* (2.95)
7=1¢=1
For the particular case which we consider
fi(diyoeesbr) = Z i€ cos(p;) + ri1(1 — €j_1) cos(¢j_1), (2.96)
j=1
gi($is s $1) = D i sin(¢) + mi41(1 — €j-1) sin(¢hj-1)- (2.97)
j=1

From which we find

0 k>1 0 k>1
8fi _ ) —rrersin(dx) k=1 89i _ ) rrex cos(¢r) k=1
0br ~ | —rrsin{¢k) i>k>1’ 0dr | Tkcos(dx) 1>k>1

—-r1(1—-€)sin(éy) k=1 r1(l —€1)cos(¢1) k=1
and for the second partial derivatives

0 k#L,k>1

0 f _ ) —ryexcos(or) k=L0k=1
O¢r0de ~ ) —Tkcos(Pk) k=£i>k>1

-r(1—€)cos(¢1) k=LEk=1

0 k#6k>1

0%g; ) —rrexsin(gx) k=Lk=1

—T‘1(1—€1)Siﬂ(¢1) k=£,k= 1

The dynamics for our N-body planar chain are described by equations (2.91),(2.94),
and (2.95) with the appropriate partial derivatives substituted from the above.
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2.5.2. Limiting Case of the N-Body Chain

In this section we will take the limit as N — oo of the chain of rigid bodies when
the total mass and length remain fixed. In addition, we require that the potential energy
in the chain remain independent of N. Additional assumptions will be needed to assure
this is well behaved.

The starting point in our development is (2.91). We will consider this equation
as N — oo with Y. m; = myo, and Y, 7; = L. We also assume that k;r; — u, and
m;[Ti — p.

We will construct a partition of the interval [0, L] by the points s; = 37, r;, thus
0< 81,<..< sy-1 < N. For any partition we let R = max;{r;}. We require that
R — 0, and N — oo. We assume that the angles between the rigid bodies go to the
limit in a uniform fashion. First we will recast (2.91) in a slightly different form. We

note that

X L 8f 0f | dgi Bg;
0=3 m {Z(ﬁmﬁéwm

i=k =1
- LN, 0 Ofi | Bgi O
2 m {;;(a@m 500 56,009, 1%

+ Ik&&k — ki(@re1 — Ox) + kx—1(dx — Pr1)
+ z m; {zl gg; } (2.98)

where we have used the fact that -—L =0 = 0 for £ > ¢. This can be rewritten as

7a¢

N afz 1 N agz
0= Z 13¢ dt ;fj"l"wl +§ 164) dt Zg]+yl
+ Libr — ki(bre1 — O) + ki—1(dk — ¢k-—1)
N sz . Y agi o
2—; Py * Z Ers
+ Iidi — kk(¢k+1 = ¢k) + kro1(Pk — Pr-1)- (2.99)

If we recognize that we have no external forces and appeal to conservation of linear

momentum.

N k
3 omiEi =~ ) madi
i=1

t=k+1
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Using this result we can change the limits of summation on the sums which are from
i=k+1to N in equation (2.91). Doing this, dividing through by rj, and rearranging

we can rewrite Lagrange’s equations for the kt* hinge in the form

k i—1 2
sin(gr) Y mi{ Y (;975(7‘j+1€j+1 cos(¢j+1) + 1;(1 ~ ;) cos(;)) + %1 }
i=1 =1
Jk i—1 62
+ cos(¢r) Y mi{ > g7 (Tit1€isnsin(ia1) + (1 =€) sin(4;)) + 41 )
=1 i=1

L DB Frea(frer = 6u) = ku(de — dr) _

- " 0. (2.100)

We are now in a position to take the limit of the chain of N-rigid bodies as N — oo
while the total length L, the mass M, and the potential energy of the chain remain fixed.
For any particular N the joints partition the length into NV intervals r, s+, TN. Note that
each interval 7; is a function of N. As we refine the partitions we have limpy o r; = 0.

Under suitable assumptions the limits of the first two terms in (2.100) can be shown
to be Reimann-Stieljes integrals integrated along the curve defined in the limit of the

n-body chain. These two terms are

k i—1 59
]\}i_inoo sin(¢x) Z m,{Z b(i—z(rj_,_lejﬂ cos($j41) + 7i(1 — €;) cos(;)) + 1}
i=1 =1
’ S 52
= sin(¢5)/o pa(o) { | B cos(@,) dr + x(O)} do, (2.101)
k i—-1 9?
Jim cos(g) Y- mi{ Y 5z (€1 sin(gipn) + r5(1 — ¢) sin(¢;)) + 4 }
=1 j=1

S o a2
0° . .
= cos(¢5)/ pa(o) { Er) sin(¢,)dr + y(O)} do. (2.102)
0 0
Note that the right hand side of the above are written in a form suggestive of the
underlying physical system.
The remaining two terms arise for the rotational and kinetic energy of the individual
rigid bodies and the potential energy in the joints. Both ki and Iy depend on N. For

these two terms we compute

. I
Il 1
Jim 2= 1(5), (2.103)
and ) 59
ket (Prir — Si) — ki(dr — Pz _ ¢ 4
N, " = Ho5 (2.104)
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We can now combine these results. If we do this we have the following; the limit
of the N-body chain as N — oo, under the assumption that the potential and kinetic

energy remain constant will be
. s 7 9 .
sin((S)) /0 pa(S) { | g conttrr + x(O)} do

+ cos(9(5)) | T o(S) {[ 2 sin(g(r)) dr + 0} do

0°¢(5)

o L,$(8) =0, 0<S5< L. (2.105)

+p

Finally we show that (2.105) corresponds to the expression for the limiting case of
the continuous model in the second section. Let ¢(5) = a(S) + ¢ where 1 is an angle
between a rotating coordinate frame and the inertial frame and «(5) angle of a tangent
to the chain at the point § with with respect to the rotating coordinate frame. The the

previous expression can be rewritten

S g . . .
—sin(a($)) [ {p(o) [ {cosa(r))a(r) +26(rb +9°) + sin(a(r)(a + )} dr
+ cos(1)(0) — sin(¥)j(0) } do
S 4 . . .
+ cos(a(9)) / {r(o) / {cos(a(m)(@+ %) — sin(a(r))(&3(r) + 2a(r) + $7)} dr
+5in($)#(0) + cos()i(0) } do
Fpmen = L(Gr + ), 0<S<I. (2.106)

which agrees with the continuous case when #(0) = 0 and §(0) = 0.

2.6. Dissipative Mechanisms

Damping mechanisms are frequently modeled in a less than satisfactory manner
in the engineering literature. In part this reflects complicated and poorly understood
physical mechanisms which may cause these effects. In solids, the nature of the internal
forces which produce dissipative effects is generally very complex, and varies consid-
erably between different types of materials. However, some dissipative mechanisms
are able to be incorporated in the continuum constitutive equations of elasticity under
reasonable assumptions. Two of these are square root damping and rate damping.

Square root damping has been employed by Balas [1979], and Gibson [1979] in

studies of large space structures. This type of damping in a simple Euler-Bernoulli
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beam has the form
dtu 8%u 0%*u

ElFsi+ 55t t P4 g2

=0.

Such a model may however produce negative energy dissipation, a physically unrealistic
situation. (For an example, see Wie [1981]).

Rate damping is one of the more commonly employed damping models. Rate
damping has it’s origin in the work of Voigt (Voigt, [1892]) and is frequently referred
to as the Kelvin-Voigt model. This damping model employed with an Euler-Bernoulli
type beam is of the form

u °u 0%u

Elgsi+ 55ig; T P45

951 =0

In the following section we discuss how this model is incorporated in the constitutive

equations.

2.6.1. Constitutive Equations with Rate Damping

Incorporated in the stored energy function, the conditions under which the mech-
anism of rate damping generates a contractive semigroup is described in Marsden &
Hughes [1983], p.357. The conditions are satisfied if, for example, the first partials of @
with respect to the strains are strongly elliptic.

An example of a material stored energy function incorporating rate damping is
¥ = ¥(ATy,ATw) + BiT + B,$2 (2.107)

When used in our rod model such a constitutive equation gives the linear and rotational

equations of motion

ov 0
CAMNCS 1) + B 2.1
PaT; 85(n+B1n)+n (2.108)
Ip__%vt" +wxIw= '“aas(m+ Barm) + Z—? x (n+ Byn) + m (2.109)

If we proceed as before then we set I' = 0, and obtain

S o1 62
2—(m + Bom) + A(S,t)E3 x / pa / ——ZA(O‘g,t)Eg doydoy =I,w+wx Iw
8s o o Ot
(2.110)
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For the example of the plane case this yields

0o

FBa s 7 da\? 0%«
il (v) : — ) —sina-——
Elgg + 52" 5og * S”‘a/o ”A/o (cose ( ﬁt) sine g ) dozdoy

S o1 Jda 2 a 0%a
— i s Z Ndooda, = I
+cosa/0 pA/O ( sma(it) + cos o t2) lop) al—Ip B

(2.111)
and upon linearization this yields
8%u, 0%u, & uy O%uy
prge + Bl g = B g + 1Y g (2.112)

2.7. The Hamiltonian Formulation

In this section we present very brief outline of the Hamiltonian formulation of
the rod model. The Hamiltonian formulation provides a framework for the systematic
procedure of reduction, the exploitation of symmetries in our problem which enables us
to eliminate variables. The reduced model provides the basis for the analysis of stability
of relative equilibria in the next section.

In the remainder of this section we introduce some key ideas for recasting the rod
theory into the Hamiltonian framework. The material on Poisson manifolds is found
in Weinstein [1983], a complete discussion of the geometric viewpoint will be found
in Arnold [1978], or Abraham & Marsden [1978]. The geometric viewpoint as regards
elasticity can be found in Marsden & Hughes [1983], while the specific case of rod theory
is outlined in Simo, Marsden, & Krishnaprasad [1987]

2.7.1. The Rod as a Hamiltonian System

The configuration of the rod takes values on a Poisson manifold. If we denote by
C>(M) the set of infinitely differentiable real functions defined on a manifold M then
we have the following;

Definition:Let M be a manifold of dimension n. A Poisson structure on M is a
Lie algebra structure {-,-}: C®(M) x C®°(M) — C*®(M) which satisfies the Leibnitz
identity, {fg,h} = f{g,h} + {f, h}g. The manifold M with such a structure is called a

Poisson manifold.
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The Leibnitz identity guarantees that the bracket is a derivation in each entry.
Consequently, for H € C*°(M) there is a vector field {g such that {g - f = {f, H} for
all £ We call £ the Hamiltonian vector field generated by H. Note that symplectic
manifolds are a special case of Poisson manifolds, since we can always construct a natural
Poisson structure on a symplectic manifold by setting {f, g} = w(€y,€,), where w is the
given symplectic 2-form on the manifold. Thus, since the cotangent bundle 7*G of a
Lie group (' is a symplectic manifold, it is also a Poisson manifold.

We can also use the bracket operation in the Lie algebra G of a group G to obtain
a natural Poisson structure on the dual of the Lie algebra. This Poisson structure on
G* is called the Lie-Poisson structure and makes G* into a Poisson manifold. Let [-,-]
denote the Lie algebra operation in G, the Lie algebra of the Lie group G. If u € G* we
can define the bracket operation

6f b9

5 em]) (2.113)

{£,93 1) = =(u |

where 6 /6 is the variational or Frechét derivative of f and {-,-) denotes the pairing

of G and G*. Recall that 6f/éu:G — G* as
DF(pu)-6p = (§F/6p, b (2.114)

Sometimes G* with this structure is denoted by G*.
Subsequently we will need the notion of a Poisson mapping. Such a mapping

preserves the structure of the underlying Poisson manifold. More precisely, we have the

following definition

Definition. A Poisson mapping ¢: My — M, between two Poisson manifolds is a map
such that
{fod,g0od}1={fg}e0¢ (2.115)

where {-,-}; is the Poisson bracket of My and {,-}2 is the Poisson bracket of M.

We next recall the definition of a Hamiltonian system,

Definition. A Hamiltonian system is a Poisson manifold M, together with a Poisson

bracket and function H € C*®(M). The field £y determined by the condition
{¢q,Y}=dH Y (2.116)
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is called the Hamiltonian vector field. Integral curves of the Hamiltonian vector field

€p describe the time evolution of the Hamiltonian system (M,{, },6x).

From this definition we have, for 2 € M, ¢ = £y(z). We call the Poisson manifold
the phase space of the system and the scalar function H the Hamiltonian of the sys-
tem. The dynamics are made more explicit by observing that if F; is the flow of the

Hamiltonian vector field £g, then we have for a real function g defined on M
d
S0 ) ={go Fr, H} (2.117)

Thus, one sees that the Hamiltonian and the associated bracket determine the
dynamics on M of the system.

We will refer to functions f € C®°(M) for which {f,g} = 0 for all g € C°(M) as
Casimir functions. Casimirs represent quantities which are constants of motion, for any
Hamiltonian system on M. The Hamiltonian is one example of a Casimir function.

We now turn our attention to the geometrically exact rod model, outlined in an
earlier section. The manifold for the geometrically exact rod is the cotangent bundle
of the configuration, T*C, of the configuration space C defined in (2.20). This is a
symplectic manifold. We can take as a bracket the canonical 2-form associated with it.
The Hamiltonian for the geometrically exact rod model can be written in the spatial

description as
L L
H = %/ (patllpl)? + - I w)dS + %/ U(AT,ATw)dS (2.118)
0 0

where the the first integral corresponds to the inertial component and the second integral
. JAN ; PaN

corresponds to the potential energy. In the above p = p4¢, and 7 = I,w denote the

linear and angular momenta of the rod, and T' = AT, @ = ATw are the convected

strain measures. The total linear and angular momentum of the rod is given by
L L
E:/ pdS, a=/ (w+ @ xp)dS. (2.119)
0 0

A direct calculation (Simo and Vu-Quoc [1986a]) shows that the total angular momen-

tum of the rod is a conserved quantity; i.e.:

da(t)
=<=0 (2.120)
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Note that the total angular momentum is a mapping, @:C — IR®, where IR? is
equipped with the standard cross product identified with so(3)* — the dual of so(3) —

via the Lie-algebra isomorphism * : so(3) — IR%; i.e.:
[é1 s (:‘)2 ] = ((':)1 X éz )A (2121)
where [(:)1 , (:)2] = 0,0, - é)g@l, is the matrix commutator.

2.8. Symmetries and Model Reduction

The general notion of reduction on a Poisson manifold and the procedure for com-
puting the reduced space is found in Marsden & Ratiu [1986]. In Marsden & Weinstein
[1974], a procedure for the reduction of symplectic manifolds with symmetry is de-
scribed. This procedure exploits the symplectic structure of such a manifold (see also
Abraham & Marsden [1978]). In particular, a momentum map is used to partition the
manifold into equivalence classes J~*(u), each corresponding to a fixed value of mo-
mentum p. We then quotient this manifold by an isotropy group G, constructed from
the coadjoint action, the resulting manifold corresponding to our reduced phase space
M, = T (1)/G,.

An alternative method of reduction which avoids the explicit computation of
T*G/G is the basis of the reduction described in Krishnaprasad & Marsden [1986).
Under suitable assumptions we can identify G* with the quotient space T*G/G, avoid-

ing explicit computation of T*G /G and working instead with G*.

2.8.1. Reduction of Symplectic Manifolds with Symmetry

The reduction process used by Marsden & Weinstein [1974] to construct the reduced
phase space is described in this section. This is a special case of the more general notion
of Poisson reduction (see Marsden & Ratiu [1986)). In this case we exploit the underlying
symplectic structure.

The first part of the procedure uses the momentum of the system to partition the
manifold. This is based on the idea of a momentum map, J: M — G*. The momentum

map is defined as follows.

Definition. Let (M,w) be a connected symplectic manifold and ¢:G X M — M a
symplectic action of the Lie group G on M. We say that a mapping J: M — G* is a
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momentum mapping for the action if
(Ted - v) = wp(€x(),v), for £€G,veTM, (2.122)

where €x is the infinitesimal generator of the action corresponding to €.

In other words, the vector field corresponding to the infinitesimal generators has
the dual map J, J = (J,&) corresponding to a hamiltonian function. In fact J is an
integral of the action. This abstracts the physical notion of a momentum.

An important group action is the adjoint representation of a Lie group G, defined

as

by — gzg~t. (2.123)

The linearized map, at the identity is called the adjoint representation Ad: G — G. The
coadjoint action is the induced mapping Ad*: G — G. For a fixed u € G* we can define

the orbits O(u) of the coadjoint representation as

O(p) = {Ad"(g9)ulg € G}. (2.124)

Recall that a map 7: M — M is equivariant for any two group actions ¢4: M — M and
<Z>g: M- Mif T¢g = <i>g7'. If ¢4 is an exact symplectic group action then the moment
map J: M — G is equivariant with respect to ¢, and the coadjoint representation of G.
Consequently, the image of {¢,(z)|g € G} for fixed z € M under J is given for p = J(z)
by

{Ad*(g)p|g € G}. (2.125)

We define the isotropy group G, of u,

Gy = {g € G|Ad*(g)p = p}. (2.126)
Now we consider, for a fixed u € G* the set

J N p) = {z € M|J(z) = p}. (2.127)

This partitions M into regions corresponding to fixed values of the momentum.

The reduced phase space is now defined to be

M, =J(n)/G,. (2.128)
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This reduced manifold M, has a natural symplectic structure w, such that :*w = 7*w,
where i: j~1(u) — M is the inclusion map and 7: J~(u) — M, is the natural projection.

We now return to the original problem of reducing a phase space T*G by quotienting
out by the group G and outline an alternative method of reduction. Since TG is a
symplectic manifold we know it is also a Possion manifold. In addition the dual of the
Lie-algebra G* is a Poisson manifold with the Lie-Poisson structure. Since the Lie group
G acts on T*G freely and properly and the action is a Poisson map, then T*G/G is a
Poisson manifold. If we consider the group action of left translation, L;:G X G — G,
then it turns out that the map ¢:T*G — G* sending ay € T;G to TLy-ay € G is a
Poisson map which induces a Poisson diffeomorphism of T*G/G with G* (see Marsden,
et. al. [1983] for details). This identifies T*G /G with G*.

A simple example of the above is furnished by the free rigid body rotating about
a fixed point. The configuration of the rigid body is given by elements of SO(3), the
phase space is T*SO(3), typically consisting of the Euler angles and the components
of the spatial angular momentum vector. The Hamiltonian is given by H = %p -J1p
where p is the momentum vector and J is the inertia operator.

In this case if we use the expression for the Lie-Poisson structure where the Frechét
derivatives now correspond to ordinary gradients, {,} is the cross product, and {,) is

the dot product in IR® we have, for f € C®(M)

f={fH}, (2.129)

from which
Vi-p=p-(Vfx VH), or p=pxJI7'p. (2.130)
which are simply Euler’s equations of motion.

2.8.2. Rigid Body with Linear, Extensible Shear Beam
In Krishnaprasad & Marsden [1987] a rigid body with an attached appendage is
reduced to a system which eliminates the variables associated with the rotation of the

configuration.
In this example we consider a rigid body to which a flexible appendage is attached.

The phase space associated with this coupled system is T*G X P where P is the phase
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space of the flexible appendage. Since the appendage is attached to the rigid body we
assume G acts on both the rigid body and appendage simultaneously.

We define a mapping ¢: TG X P — G* X P by
$(og,z) = (TL; - ag,97" - z). (2.131)

This mapping transforms the conjugate momentum oy and = € P to body represen-
tation. Furthermore, this mapping identifies the quotient manifold (T*G X P)/G with
G* x P. A specific example is furnished by the example used in Krishnaprasad &
Marsden. If we endow G* X P with the bracket

§f 6 ) é
(1.9} = =G (5L, )+ () - ot (gl%)P tdag- (%)P (2.132)

Then G* x P is a Poisson manifold and ¢ a Poisson map. In addition, ¢ is G invariant
and induces a Poisson diffeomorphism of (T*G x P)/G with G* x P.

In the case of a rigid body plus appendage, we can again define a Poisson structure
on T*G x P. Here T*G is the phase space associated with the rigid body and P is the
phase space associated with the flexible appendage.

In this case Krishnaprasad & Marsden [1986] show that the appropriate bracket on

the reduced space is

Lrss 6 5f 6
{f,g}=—p-(vmf><vmg)+/0 (%-ﬁ——f—-—‘i) ds

L 1ég &g
+ [ [ (o) + i (wmrem) ]
Lrss 6f
—[) [E-(vmgx'r)+‘—57n—-(vmg><m)] ds.
The reduced Hamiltonian, with the mass of the appendage neglected is

L 2 L or o
HZ%J—lp.er%/o I.%)_”_dsq-%/o K5§~5§ds (2.133)

from which we can compute the dynamics on the reduced phase space to be

1 L d%r
p=pxJ p—/o er&;ds (2.134)
F=pam+rxJlp (2.135)
r'n'—-az—r-}-me—l (2.136)
= asz r .
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For the system examined by Krishnaprasad & Marsden a family of Casimir func-

tions on the reduced space is given by
C=134(lp+ J, rx mdS|?) (2.137)

where ¢(-) is any differentiable function. Physically this corresponds to a function of
the magnitude of the momentum vector of the system. Note that if we take the time
derivative of C along a solution to the dynamics we find C = 0, confirming that C is

indeed a Casimir.
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CHAPTER THREE

LINEARIZATION AND TRANSFER FUNTIONS

In this chapter we will develop linearized versions of some specific cases of the
nonlinear models of the previous chapter. Linearized models are an important class,
there being an extensive theory for the control of linear models which we can exploit. In
particular, for linear models we can use Laplace transform techniques for the analysis
and synthesis tasks in the frequency domain.

The linearization of a dynamic model takes place in a region local to an equilibrium
of the system. In this region we consider the linear component of the vector field. In the

case of continuum models our configurations take values on a suitable space of functions.

3.1. Equilibria and Relative Equalibria

An equilibrium point of a dynamical system corresponds to a fixed point in the

phase space.

Definition. Let £ be a C! vector field on an n-dimensional manifold M. A point zp
is called an equilibrium point of £ if £(zg) = 0. A closed orbit is an orbit 7(t) for the
vector field £ when ¥(t) is not a fixed point and there is a T > 0 such that y(t+71) = v(%)
for all t.

Sometimes equilibrium points are referred to as critical points or singular points.
Closed orbits are also called limit cycles. It should be clear from the definition that if
zo is an equilibrium point, then the flow Fy, leaves z¢ fixed, i.e. Fizg = z¢. For a closed
orbit, if zg € ¥(t), then Fyzo = Fy4,20.

For the case of a rod this configuration space is the set of mappings taking points
in [0, L] into points on the differentable manifold IR® x SO(3). Thus, a point in C
corresponds to a pair (¢, A). The tangent space to the rod at a particular point T4 4)C
is the space of pairs (6¢, 6@). These are functions taking [0, L] into IR® x so(3).
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We consider the cotangent bundle T*C of the configuration which is a symplec-
tic manifold. A point on this manifold corresponds to a configuration variable and a
comomentum v:'xriable. Both, functions are defined on the interval [0,L]. If £5 is a
Hamiltonian vec;;or field on T*C then if H # 0 the critical elements are closed orbits.

These notions can be generalized to that of an invariant set. In this case we let N
be a submanifold of M. Then N is an invariant set if the flow of a vector field £ leaves
N invariant, i.e. if o € N then Fy(zo) € N for all t. Geometrically this is the case if
and only if £ is tangent to V.

We next consider the notion of an equilibrium on a reduced manifold. We have the

following

Definition. A point € M is called a relative equilibrium if 7,(z) € M, is a fixed

point for the induced Hamiltonian system g, on M, where u = J(z).

In other words dH (7 ,(z)) = 0.
A useful criteria involving the Hamiltonian and a momentum mapping on M is the

following (due to Souriau-Smale-Robbin);

Proposition. Let the conditions of of the previous definition hold. Then z € J~!(p)

is a relative equilibrium if and only if z is a critical point of H X J: M — IR X G*.

Proof: See Abraham & Marsden [1978], p.307

3.2. Linearization of Continuum Models

Linearized systems are an important class of models for which a well developed
theory exists. To correctly linearize a model we must first determine the associated
equilibria about which to perform the linearization.

Given an equilibrium point z¢ and vector field £ we have the following
Definition. The Linearization of £ at an equilibrium point z¢ is the linear map
E(20): TpeM — TpoM
defined by

§(z0)- v = S(TE(a0) V)

t=0
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where Fy is the flow of £ at z,.

For a finite dimensional system this corresponds to taking the linear component in
a Taylor series.

In the case of a finite dimensional system the definition corresponds to the stan-
dard notion of linearization. For the infinite dimensional case we need the notion of a
variational or Frechét derivative (see Marsden & Hughes [1983], p.183), a generalization
of the ordinary derivative.

Let X be a Banach space and consider a function f: X — IR. The function f is
said to be Fréchet differentiable at a point z, if for every h € X

[z +¢h) - f(2)

lim

€—+0

= 6f(z;h) (3.1)

exists and defines a linear bounded transformation (in h) mapping A into IR. Equation
(8.1) defines the differential of f which we denote as 6 f(z; k). Since the differential is a

linear bounded transformation in h we can write

6f
(H’

where (-, -) is the norm defined on X'. We call % the Frechét derivative of f at the point

By = 6§ (a;h) (3.2)

z€eX.

3.3. Examples

In this section we will consider equilibria for the linear extensible shear beam and

the nonshearable, inextensible rod model as well as linearized versions of these.

3.3.1. The Linear Extensible Shear Beam

Equations (2.135)-(2.137) describe the dynamics of the reduced model for the linear
extensible shear-beam attached at the base to a rigid body. In these equations we
assume that J is the inertia matrix of the rigid body and that p4 is the uniform mass
per unit length of the attached appendage of length L. The configuration at any times
is described by p, the momentum vector of the rigid body; (), the displacement of
the shear beam at a point S, 0 < § < L; and m(S5) the momentum density of shear
beam at the point §. The equation at an equilibrium is

L
xKer+ | xxdas,  (33)

— -1 —
O=pxJ ' 'p+ax oL A 3SX 35

-7
S=0

ar
a5
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1

0=pa~'m+rxIlp, (3.4)
0%y )

Two boundary values are associated with these equations,

0 0
0
52 = (1| = ey, and r =[as | =a. (3.6)
Sls=1 0 S=0 0

For convenience we will let w = J~17 and assume K = diag(kz , ky , k). Physically
w corresponds to the rotation rate vector of the rigid body. For the above equations
we note that for any equilibrium a given w will uniquely specify the values of » and m.
This is easily seen by noting that for a fixed p, equation (3.4) can be substituted into
(3.5) to yield a single second order differential equation in r with the two boundary

conditions specified. Thus

2
K—g—gg = —pa(r X w) X w. (3.7)

Solving the differential equation for » we get

or

9¢(5,w)
35 — T

r(5) = 9(5,)55| _ + g

; (3.8)
S=0

where ¢(5,w) is computed from the solution of the matrix differential equation for ().

Differentiating once

r(S) _ 0¢(S,w) or

9 P(S,w)
a5 ~ ~ 8s a8s T

$=0 052

: (3.9)
5=0

Evaluating at S = L, and using the boundary conditions we can solve for the value

of the first derivative of 7(.5) evaluated at § = 0.

]‘l[e _0%¢(s,w)
ol 2 852

or
85

s:La]' (3.10)

8=0

We now have both the initial conditions, thus from (3.8) both =(§) and 918(—552
are completely specified. If we substitute these expressions into (3.3) we obtain an
equation in w. Solutions of this equation for w give the steady state rotation rates for
the configuration. These can be used in equation (3.5) to compute #(5), and then m(S5)

via equation (3.4).
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Our computation of equilibria has been based on solving a wave equation satisfied
by 7, assuming that w is fixed, and then substituting the solution into (3.3) to obtain
an expression for w. In fact this is a special case of the eigenvalue problem associated
with this configuration that we have solved.

We can recast our problem into the explicit form of an eigenvalue problem as follows.

We have for the momentum

L
a:p+/ rXxmdS (3.11)
0

Using (3.3), w = Jp, and the vector identity a X (b X ¢) = (a - ¢)b — (a - b)c one finds

L
a=Jw—/ par X (r X w)dS (3.12)
0
L
= Jw+ / pa(llrll? =7 @ r) dSw (3.13)
0
= Joow (3.14)

where Jo, = fOL pa(1||7]|> =7 ®7) dS is the augmented inertia matrix corresponding to
the total inertia of the rigid body plus that of the deformed appendage.

Similarly, we can show

L &%r
0=waw—/0 'rx5~§2—d5' (3.15)
L
=waw+/ par X (w X (r X w)dS (3.16)
0
= Joow X W (3.17)

From this last equation we conclude that J..w = Aw, where A is a scalar number. But

this is simply an eigenvalue problem
(Joo = A)w =0 (3.18)

Since the computation of J., depends on a solution 7 of the wave equation,

o%r
Kb—s,; = pa(w X (wxT)) (3.19)

in general the equation which we will need to solve will consist of three, coupled multi-

nomial equations in wy, wy, and w3. There are however some fairly obvious cases where
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we can compute the equilibrium. These cases correspond to rotations about principal
axes of inertia.

Assume that the linear extensible shear beam lies along the second principal axis.
From geometric considerations the position of the shear beam will cause the principal
axes of the rigid-body-shear-beam configuration to lie in the same directions as those
of the rigid body. In this case the addition of the shear beam will have the effect of
increasing the moments of inertia about the first and the third principal axes. Because
the linear extensible shear beam cannot deflect laterally the principal axes of the of the
configuration remain fixed for any longitudinal extension of the shear beam. Thus, for
this configuration there are three axes about which the equilibria can exist. These axes
will correspond to the three principal axes of the rigid body.

The simplest case is the first one to be considered. Here we assume that rotation
takes place about the axis along which the linear extensible shear beam lies. This
assumption is satisfled when w; > 0 and w; = w3 = 0, from which ||w| = wy. In

addition we are given the boundary conditions. We compute

8¢(S,w): cos(\/(—;)c"——':'wgs) 0 0

1 0 (3.20)
o5 0 0 cos(y/42w2S5)
and,
—./tA i
9’p(S,w) _ \ v 813(\/ FrwS) 8 g a2
2 -_ .
95 0 0 —y/fwrsin(y/f2w:S)
Substituting these into the expression for the first partial of » at the boundary we
obtain 0
or
— =11, (3.22)
p) S=0 0
from which it is readily apparent that
0 0
r(S)=lax+ S|, and m(S)=|0}. (3.23)
0 0

Physically this corresponds to the linear extensible shear beam being unstretched by

the rotation. We note that the total angular momentum is associated with the rigid
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body and determines the value of w; by the relationship

llpll = jazwn. (3.24)

For the second case, we consider rotations of the rigid-body-shear-beam configura-
tion about the first or third principal axes of inertia. We consider the case when the
rotation is about the first principal axis of inertia, and note that rotations about the
third axis are similar.

Assume that w; > 0 and wy = w3 = 0, then

1 0 0
9¢(s,w) _ |0 cos(,/b2w;s) 0
) V5 (3.25)
0 0 cos(/f2wrs)
Differentiating,
, 0 0 0
0°¢(s,w) |0 - 24wy sin(, [fAwys) 0
P = vV E ” | . (3.26)
0 0 —y/ ftwi sin(y/ FEwis)

Using these in the expression for the second partial we get,

0
or 14az,/FAwysin,/§4w L)
a0 = VES Y By . (3.27)
08 {5-0 cos(y/ o wi L)

0

We can now use equation (3.8) to compute 7(s),

0
sin £4.,,8) |1 A/ wrsin(4 /5 L)
r(8) = ( ;fw: ) [ o 6:3\/1%_‘;11;%@ ]-}—az cos(,/%fwls) . (3.28)
v v 0

This equation holds over the interval 0 < s < L and satisfies the given boundary

conditions.

Using the value for the first derivative of r evaluated at § = 0 and computed above

0
= [0] : (3.29)
S=0 0
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In the present case we have w = [w; 0 0]7 and it only remains to compute the

vector m(S). From equation (3.4),

m(8) = 0 . (3.30)

sin(,/%wls) 1+a2,/%w1 sin(,/%‘:ng) N
_Powl R /%;Lwl cos( 4 /%wlL) + a2 COS( V ky “1 S)_

This corresponds to the example in Krishnaprasad & Marsden [1987].

We now consider computation of additional equilibria. Since we cannot in general
solve them analytically we need to resort to the computer. In particular, graphical
methods provide an excellent means of investigating more complicated equilibria than
we can obtain analytically.

If we restrict ourselves to the case of rotation about one of the principal axes of the
augmented inertia then (3.3) reduces to a single scalar equation. In the general case, the
solution for (3.8) has the following matrix with §; = \/%, B = \/7%, and fs5 = \/:L‘:_

then if we define

sy sin(Blloll) il gy
. (el = o) sin(Bilioie) + wEBilells ¢
we have
$11 ¢z 3
O(S,w)=|da1 ¢22 P23 (3.31)
$31 P32 Paa

With this expression we can explicitly compute J, by means of numerical integration for
any value of w. More to the point we can compute the righthand side of equation (3.15).
the set of equilibrium points then correspond to the zero elevation of this function. These
can be searched for by optimization techniques, or displayed graphically.

This technique was used on a Symbolics 3745 Lisp machine using the symbolic
computation package Macsyma. In several examples we explored more general cases of
equilibria for the rotation vector w restricted to lie in the plane w3 = 0.

Having computed equilibria for the linear extensible shear beam we next consider

linearizing about these equilibria. We will assume that , #, and 7 denote equilibrium
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values which satisfy (3.3)-(3.5). Letting p, m, and r denote the variations about the

equilibrium, we have, from equation (2.135)

. O
p=-J31pxp+pxI” p+/ (K652——rx§5‘—2~)d5, (3.32)
from equation (2.136)
9%
m = KW—J"lpxm—{-me P, (3.33)
and finally from equation (2.137)
F=piim - xr+FxIp. (3.34)

If we let §(z) denote the skew symmetric matrix of the vector z.

0 —T3 T
S(z)=| z3 0 -z},
—T9 T 0

then the linearized system is given by the operator A

-S(J7'p)  pa'l S(#)J
A= KZ,  -S(J7'p) S(m)J 1 : (3.35)
L 0 ~S(I1p)+ S(H)T !

where Lr = fo S(Kggf’f' S(f)—gfg’;r) dS. In a later section, we will use the resolvent

of this operator to compute the transfer function for the system.

3.3.2. The Inextensible, Nonshearable Rod

We now proceed to investigate equilibria associated with the inextensible, nons-
hearable rod equation in the planar case. The equation associated with this model is
(2.48). Clearly, one trivial equilibrium is that of a(S,t) = ao, a constant. Physically
this corresponds to a rod which is in an undeformed condition in ambient space.

A more interesting equilibrium can be found by letting a(S,t) = wt + ag, corre-
sponding to a constant rotation rate from an arbitrary angle. Clearly %—i% = 0, and

2
-%% = 0. Furthermore,

S (5]
cos(wt + ap) / pA(/ — sin{wt + ao)w2 dos)doy
o 0
S [/}
+ sin(wt + ag) / pA(/ cos(wt + ag)w? doy) doy
0 0

S o)
= (= cos(wt + ap) sin(wt + ag) + sin(wt + ag) cos(wt + ap)) / pA(/ w?dosy)doy,
0 0
=0 (3.36)
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from which we conclude that a constant velocity rotation from an arbitrary position is
a relative equilibrium.
We next consider a special case for which a(5,t) = a(5). In this case substitution

into the equation for the dynamics yields
O—EI —sm / pA/ 0do, doy

o1
+cos(a)/ pA/ 0doy doy,
0 0
0a

= El 33, (3.37)

from which we conclude, by twice integrating, a(S) = ag+ Sa;. To satisfy the boundary
condition at the tip, -g—g = 0, we require a; = 0. Thus, this reduces to the trivial case.
If we linearize about the equilibrium in the trivial case, @ = ag, we find
8201(5 t) 7 32a(og,t) % a(S,1)
p 6t2 / / d dO’] + EI ——8—5;5—. (338)
Substituting g—g = a into this expression and differentiating once with respect to 5 we

find

0'u(S,1) _ 8*u(S,1) 0tu(S,1)
Li5pass =Papa T B =g

which is the classical Euler-Bernoulli beam with rotatory inertia. An important ad-

(3.39)

vantage of the formulation in (3.38) over the classical Euler-Bernoulli model is that by
integrating we are dimensionally compatible with the rigid body models. Thus con-
nected rigid bodies are naturally incorporated into this formulation. In addition, the
integral form leads naturally to the construction of existence proofs for our solutions.
To linearize about the equilibrium corresponding to a constant rotation we first

recall

02
p88t2 = cos( a)/ pA/ — sin(a) (8 ) + cos(a) (a—t(;-) doy doy

) _ ’a o
+ sm(a)/0 pA/O cos(a) ( ) + sin(a) (?97) doydoy + ET 357
(3.40)

In this equation a(S,t) is an inertially referenced angle between an inertially fixed

frame and the tangent to the line of centroids of the rod. In this case our equilibrium
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corresponds to a reference configuration rotating with constant angular rate w. The
line of centroids in this reference configuration makes an angle wt at time ¢t with respect
to E3. At a point S along the rod the normal to the cross section makes an angle
a($,t) = wt + ¢(.5,t) with respect to Es.

Upon substitution into (3.40) we get

(62)—cos(wt+¢)/ PA/ — sin{wt + ¢) (w +2wa¢+% )
92
+ cos(wt + @) ((%f) doy doy

S
+ sin(wt + ¢)/(; pA/O cos(wt + ¢) <w2 ?f + (_9? )

ot
2
+ sin(wt + @) (6 ¢) doydoy + ET (-{- 82¢)

05?
(3.41)
Use of standard trigonometric identities yields
8¢ _ A a4* a¢>2
1,50 = wos(@) [ pa [ (cos(0) G — sin(0) 55
- 2w sin(¢)% — w? sin(¢)) doy doy
S -4 a¢2
+ sin(¢)/ pA/ (sin( ¢)57 + cos(¢)
0
¢

+ 2w cos(¢ )— + w? cos(¢)) doy doy + ET —= 752" (3.42)

If we take the linear component about the equilibrium we have
(5,1 1 9(o ,t 2
Ip 3t2 ) / / ( 2 ) — wé(oy,t) do; doy
8% ¢(S,t
+ &(S, t)/ pA/ w?doydoy + EI 322 ), (3.43)
which is the linearized version of the dynamics. These can be related to the classical
Euler-Bernoulli beam equations by the same technique as before. Substituting a = %g—,

differentiating once with respect to S, and rearranging we obtain

0%u(S, 1) a*u(S,1) au(S t)
PAT-f-EIW'*' aw? (85— — u(5,1))
8*u(S, t) 0%u(S, 1)
=l Gaggr ~ A S g, (B4)
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This equation represents the dynamics of the rod with respect to the uniformly
rotating reference frame. Such a model is of fundamental importance in application
to rotating spacecraft with flexible appendages attached. We note the recent interest
in related models as reflected in the papers of Kane,Ryan,Banerjee [1987], and Simo-
VuQuoc [1986].

Physically, the additional terms introduce a stiffening effect in the dynamics of the
rod. The two terms appearing on the right when the rod is rotating (w # 0) model the
components of centrifugal force due respectively to the component in the az direction
coupled into the lateral dynamics and that arising from the lateral displacement. Note
that no Coriolis force appears since the axial displacement is assumed negligible and
the component arising from %% is of second order. Furthermore, the term on the right
which appears in addition to the force due to the rotatory inertia is different from that
of Simo and VuQuoc [1986] who do not prohibit extension. We will return to this type

of model in section 3.5.4.

3.4. Computation of Transfer Functions

Transfer functions relate the frequency response of a system to the response in
the time domain by the use of Laplace transforms and associated complex variables
methods. In the case of a finite dimensional linear system this technique is straight
forward, the frequency response is related to the spectral theory of matrices. Here the
domain of the operator is well defined and the spectrum consists of a finite number of
isolated eigenvalues. Consequently, we are guaranteed the existence of the appropriate
Laplace transforms and their inverses, an important consideration for successful control
system design.

In the case of distributed parameter systems the situation is more complicated.
The spaces and operators are now infinite dimensional and we need to be concerned
with a number of issues which are taken for granted in the finite dimensional setting. In
general, the spectrum associated with an infinite dimensional operator has continuous
and discrete components. However, the operators which arise from our models will be
shown to have compact resolvent. Operators of this class have spectra very similar to
operators in a finite dimensional space. In particular these operators have a countable

number of eigenvalues at isolated points in the complex plane. Such operators are com-
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mon in mathematical physics, frequently arising from differential operators associated
with boundary value problems.

Physically, the models we consider represent rigid bodies with flexible appendages.
We can frequently partition such models into finite and infinite dimensional components,
with the rigid bodies described in a finite dimensional space and the flexible components

in an infinite dimensional space. Such a model takes the standard, abstract form

d
-;t—’ = Az + Bu, y=Cz (3.45)

where A, B, and C are given linear operators, o is the state of the system, u is a
prescribed input, and ¥y is the measured output. In the analysis of such a system, the
properties of the operators provide important information about the solution, (see for
example {Slemrod, 1987]).

The spaces we work with are a special class of the Sobolev spaces [Sobolev, 1938].
They will be denoted as H*(2, IR") and defined as

HY(Q,R") = {z € C®(Q, R™) | |lz||n: = 4| D_lID=|l2 < oo}
i=1

The space H*(f, IR") is a Banach space. In fact, H*(Q, IR") is simply the subspace of
L2(Q, IR™) functions whose first s (generalized) derivatives also lie in L*(, IR™). Note
that H°(Q, IR") = L*(Q,IR").

We can endow H*(Q,IR™) with the inner product

(z,y) = Z/ Dz - D'y dQ
i=1 /&

in order to make it into a Hilbert space. The associated norm is precisely the “energy
norm” used in the subsequent examples.

The systems we consider will have the property of skew adjointness of A, that is
A* = —A. From Stone’s theorem [c.f. Yosida, p.253] we know a skew adjoint operator
is the generator of a Cy, unitary semigroup U(t) on the associated Hilbert space.

There is a very close relationship between skew adjoint operators and Hamiltonian
systems (see Chernoff & Marsden [1970]). Recall that a linear operator A : H — H
with domain D(A) is Hamiltonian if it is w-skew, w(Az,y) = —w(zx, Ay), for all z,y €
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D(A),with w a symmetric bilinear form. Note that the Hamiltonian which is just the
energy of the system in a configuration, is given by H(z) = tw(Az,z),z € D(A)
The energy norm can be introduced as the norm associated with the Hilbert space

M. This norm is defined by the inner product (z,y) = w(Az,y). Thus,

(z, Ay) = w(Az, Ay)
= —w(Ay, Az)
= —(Az,y)

from which we conclude A* = —A. Thus Hamiltonian systems give rise to skew adjoint
operators.

We next turn our attention to the spectral analysis of the operator A. From a
theorem in Kato [1976] (see p.187) we know that if A is a closed operator with compact
resolvent then the spectrum of A is discrete. It will consist of a countable number of
isolated eigenvalues with finite multiplicities. The resolvent in this case can then be

expressed as an infinite series of the form

Us- A= Y ——(dna)dn (3.46)

n=—0oo

where A, is the n!* eigenvalue and ¢, is the associated eigenfunction. From the ex-

pression for the resolvent we can write the transfer function
H(s)=C(Is— A)™'B

> —Clén, B)on (3.47)

n=-—-oo

It is often straight forward to show that A is closed. It is usually more difficult to
show compactness of the resolvent. In our examples we can exploit the structure of the
underlying Sobolev spaces to settle this.

An important fact related to Sobolev spaces is contained in the Sobolev embedding
theorem (see Yoshida [1971], Adams, [1975]). In fact, the Sobolev embedding theorem
arises as a consequence of the inequalities which also bear his name. While we will not
explicitly use these inequalities; here we note that the Poincaré inequality used in the
next chapter is a special case. (It is also, and perhaps more naturally, a special case of

Gardings inequality (see Marsden & Hughes [1983], p.324])).
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The special case of the Sobolev embedding theorem we will use asserts that
H*([0, L], R) is compactly embedded in C*([0,L],IR) when £ > 2 4 k (see, Mars-
den &Hughes [1983], p.326). From the definition of H*([0, L], IR) it is clear that we
also have C*([0, L], IR*) c C*([0,L),IR"). From this we can conclude as a corollary
to the embedding theorem that H([0, L], IR) is embedded compactly in H*([0, L], IR)
when £ > 3 + k. We can use this result to establish that the resolvent of an operator

A: H® — H* is compact.

Proposition. Let A be an operator such that A: H%([0, L]IR") — H*([0, L], R"). If
£> % +k then the resolvent of A is compact in the norm on H*([0, L}, IR").

Proof: We have (Is— A)~1: H*([0, L)R") — H*([0, L), IR"). Let {z,} € H*([0, L], R")

be a bounded, convergent sequence. Then we can write

[(Zs = )7 (@n = zm)ll < (1T = A7 (2 = 2m) 1

S K|(zn — zm)| g 0< K <o

where we have used the compact embedding to assert the existence of K, and the
convergence of {z,} in H*([0, L], IR") to establish the result.

In fact, embeddings of this type are known as Hilbert-Schmidt embeddings, these
embeddings play an important role in systems arising from differential operators (see
Adams, [1975], p.173). More generally the Sobolev spaces and the associated inequalities
are essential to the theory of partial differential equations (see for example, Trevés,

[1975], section 24).

3.5. Some Examples

In the remainder of this chapter we will compute the transfer functions associated
with the two models which we have discussed before. The first model is that of the
linear extensible shear beam attached to a rigid body. The second is that of a planar in-
extensible, nonshearable rod attached to a rigid body and linearized about two different

equilibria.

3.5.1. Rigid Body and Linear Extensible Shear Beam

The first example we consider is that of the linear extensible shear beam attached

to a rigid body. We have discussed this model in several earlier sections, in particular
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we introduced a linearized version of this model in section 3.3.1. Recall that linearizing
about an equilibrium, (p,#,7) € IR® x H([0, L), IR*) x H°([0, L], IR®) we obtain the

equation for the dynamics for 0 < § < L.

#(S,t) -S(I7'p) Pl S(#)J! (S, 1)
m(S,1)| = K> ~-S(J~1p) S(mm)J 1 m(S,t)} :
p(1) L 0 ~-S(J7p) + S(p)J 1 p(t)
(3.48)

where

85? a8

In this equation $ € JR? is the rigid body momentum vector at the equilibrium, 7(-) €

L 25 2
Lr:/ & ZL* xr—r"xKi%)dS.
0

HY([0, L], IR®) is the configuration variable of the flexible appendage at this equilibrium,
and finally 72(-) € HO([0, L], IR®) is the momentum density of the flexible appendage.
Furthermore, J is the inertia matrix of the rigid body, K is a symmetric, positive
definite, stiffness matrix, and p4 is the (uniform) mass density of the flexible appendage.
S(-) is the skew symmetric cross product operator of the vector argument.

The elements p(t), v(S,t), and m(S5,t) of the state vector correspond to small
excursions about the equilibrium points p, #(5), and 7(S). Note that the appropriate
boundary conditions for 7(S,t) are zero if we are to satisfy the boundary values of the
original problem, thus »(0,t) = 0, and 9r(L,t)/3S = 0.

The infinite dimensional component of the operator is of the general form,

2
[;% + S(w)] r(5,t) - pAQZ—g—gi’—t) = B(9)p(?). (3.49)
This is a hyperbolic equation. It is exactly the classical wave equation when S(w) =
0. In our case the additional component S(w) is due to the rotation of the entire
configuration and the consequent forces which arise in the rotating frame of the flexible
appendage. This introduces an effect similar to damping, but fundamentally different.
As in the classical case the solution of such a system can be computed by separation of
variables. Such an approach gives rise to the modal analysis techniques used extensively
in the study of vibrations.
We next add a control torque to the rigid body and assume we can measure tip

position. Let m(t) € IR? denote the control torque. the measurement of tip position
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will be denoted z(t) € IR® If we define

-SSP pE S(#)J ! L
AT -k -su) s B= |0
L 0 -S(J'p)+ S(p)J ! lj
C=[ 1|s=¢ 0 0]

where z1(t) = p(t), 22(95,t) = m(S,1), and z3(¢) = p(t) then our linearized, distributed

parameter system can be put in the form

dx
Et-—-Aa:+Bm, z=Cz

Physically, ; corresponds to the displacement at §, @, the momentum density at 5,
and 3 the rotational velocity of the base mass. In addition, at the base we have the
compatibility condition z3(t) = Jp;'0z2(S,t)/05 at S = 0. Associated with this we
have the following Hilbert space

H = {(z1, 2, 23) € H([0, L], R®) x L*([0, L], IR*) x IR®; z,(0) = 0},

with the inner product,

L dei(S) dyi(S
@ =t [ {2 IO ) a9)} a5+ 1o 3

We note that this norm is the natural norm associated with the total energy of the

system, (i.e. H = (x,z), see the expression for the Hamiltonian in section (2.6).)

The domain of definition of A is

D(A) = {(@1,z2,23) € H([0, L], R*) x H°([0, L], IR*) x IR?;
d:v1(L) =0 diBg(O)
as~ ~ PAT4s

:l!l(O) =0, = Jm3}7

where we have explicitly introduced two boundary conditions which are needed for @,
to satisfy the boundary conditions on #. Additionally the compatibility condition is
required to match the rigid body motion with that of the base of the appendage.

The dynamics of this system are clearly Hamiltonian having been originally formu-

lated as a Hamiltonian system (see section 3.7). Furthermore, the linearized dynamics
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are again Hamiltonian (see Marsden-Hughes [1983]). We are therefore assured that A is
a skew-adjoint operator, A* = — 4 which we are assured by the real version of Stone’s
theorem will be the generator for a unitary semigroup.

The resolvent can be constructed from the eigenvalues and eigenfunctions associated

with 4. Hence, we look for solutions to the eigenvalue problem

Az = e, (3.50)
or more explicitly
~S(J7'p)xy + pylas + S(F)T lzs = Aay, (3.51)
K%;i; - S(J7'p)zy + S()T 'z = Ao, (3.52)
/OL(S(J‘lﬁx m)z) — S(7 )K‘fi;’;
-S(I7'P)zs + S(B)T taz = s (3.53)

Eliminating 3 from the first two equations we obtain
d2w1
ds

This equation describes the dynamics associated with the flexible appendage.

K

~pa(S(T7'B) + A2y = —pa(S(T715) + N)S(#)T Ly — S(m)J le,.

Integrating the third equation by parts we have

(S(I~'p)— S(pyI 7 + U\)ws =
S(K )m1| s=1 + S(F) KT il

a5 15=0
/ S(86 )Ka‘”l S(Kg;)%? ds.

which describes the dynamics associated with the rigid body connected to the base of
the appendage.

If we restrict ourselves to the equilibrium computed in the earlier example for which
K is diagonal and k; = k3, with 7, = 0, and r3 = 0 then we have for all S.
or )21 0z,
88’98’

and the integral term vanishes. In this case the dynamics of the rigid body are coupled

S(5g )Ka"31 S(K=

with the rod through the boundary conditions.
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3.5.2. Nonshearable, Inextensible Rod with No Rotatory Inertia

We now turn our attention to the state space formulation and the computation of
transfer functions for a nonshearable, inextensible rod connected to a rigid body. In
the initial case we will treat the rotatory inertia to be negligible and we assume our
linearization is done about a nonrotating configuration. The control torque will be
applied to the rigid body at the base, our measurement is assumed to be either the
rotational velocity of the base or the acceleration at the tip of the appendage.

An alternative method one could follow is based on a technique of Mindlin [1950]
for solving a beam equation with time varying functions at the boundary. In this case
one considers the dynamics associated with the rigid body at the base to be the time
dependent functions. In our case these correspond to the control torque as well as the
reaction moment of the rigid body which show up in the boundary condition at the
base. By a suitable transformation one can transform the system to a nonhomogeneous
equation with stationary boundary conditions. The solution is then found by standard
techniques. In fact this generalizes the method of separation of variables enabling us to
explicitly solve the equations for the model of this section. In contrast, the technique we
use is based on spectral analysis of the generator of a one parameter, unitary semigroup.
This method makes clear the relationship between our model and the spectrum of the
associated generator.

The rod equation, in Euler-Bernoulli form and neglecting rotatory inertia is de-
scribed in Love [1944] . It is of course

4 2
d'u(s,t) 0'u(S,1) _

El—ge— tra—%z

(3.54)

Associated with this are the four boundary conditions

2
u(0,t) = 0, 6—%‘%& =0,
8u(0,1) 9%u(0,t) &3u(L,t
Is 5500 ~F g5 =™ “ﬁﬁlz&

The boundary conditions at the base correspond to the hinged condition and the dynam-
ics of the rigid body. The boundary conditions at the tip reflect the absence of a force
or moment. The tip position is given by u(L,t), the tip acceleration by 82u(L,t)/dt,
and the base rotation rate 8?u(0,t)/050t.
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The system can be recast in an infinite dimensional state space representation as

follows; first define z,, z2, and z3 as

z1(S5,t) = u(S5,1), z2(S5,t) = ?-%()%Q, z3(S5,t) =

O?u(S,1)

980t |g_g
Clearly z; corresponds to the lateral displacement, 2, the lateral velocity, and z3 the
angular velocity of the base mass. In addition, at the base we have the compatibility

condition z3(t) = dz(S5,t)/0t at S = 0. We define;

0 1 0 0
A=| -E4 0o 0o |, B=|0|,
-%%f 5=0 o0 . -%a
C= —-fjd‘% ol 0 0 ] (tip acceleration),

or

C=[ 0 0 1] (base rotation rate).
Associated with this set up we have the following Hilbert space,
H = {(z1, 2, 23) €EH*(0,L) x L*(0,L) X IR; z1(0) = 0},

with the inner product,

L d?z1(S) d*y1 (S
(:c,y): %/0 {EI 239(2 ) 3;(2 )+p,4x2(5)y2(5')} ds + %IB(I:3y3.

We note that the norm is the natural norm associated with the total energy of the

system, (i.e. H = (z,z), the Hamiltonian of the system).

The domain of definition of A is

D(A) = {(21,22,23) €H*(0,L) x H*(0,L) x IR;

d*zy(L) dzy(L) = dzy(0)
$1(0) = 0, dS2 = 0, ds3 = 0, ds = 1113}.
Thus we can write the system in state space representation as
dx
Tl Az + Bm, z2=Cwx (8.55)
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where A,B, and C are as defined as above and = = (z3, 22, z3)%, m(t) is the torque
applied to the base, and z is the measurement of tip acceleration.

It is a straight forward computation to show that the operator A is skew adjoint,

A= —A*. Thus

22, d? dyy EI d4:1: El d2z
dz, d® & L gt
_1 2 yl _ ..o ey
=Bl { s as? |, ~ T ass |, +/0 2 g1 %
d3:1:1 d:l?l dy2 dzil?l d2y2 d21‘1
T g5 |, T a5 ds|, '/0 a5z ds7 Ut g 5=0y3}'

If we evaluate, rearrange, and use the compatibility condition we find;

L d2 d2 d4 d2 0
e,y = ][00 38 4o T L as - THE
o Lds?' dS ds ds
dea(L) Eu (1) (L) @3:(0)
ds  dsr 22(L) g5 ds3 +22(0)—m— 153

3z 324 T 1 2
d dlbgL)yz( L)+ d S(o)w(o) L& dS(2L) dy;gL) dSEO)( dy (0) ys)}_

To satisfy (Az,y) = (x, A*y) we require that the terms on the second and third lines all
be zero. We can go through them term by term thus; Since dzy(L)/dS # 0 we require
that d?y;(L)/dS? = 0. The free tip means (L) # 0, thus we require d®y(L)/dS? = 0.
We have z2(0)d3y;(0)/dS® = 0 since 25(0) = 0 Similarly, since d®z,(L)/dS® = 0 we
have d®z,(L)/dSy2(L) = 0. Next d3z1(0)/dS® # 0 requires y2(0). Since d*z1(L)/dS* =
0 we conclude that d?z1(L)/dS*dy,(L)/dS = 0. Finally, d*z1(0)/dS* # 0 requires
dy2(0)/dS = ys.

Note that we have that y3(0) = 0. This implies that y;(0) is equal to a constant.
However, for the domain to be a vector subspace we need this constant to be zero. Thus
we replace y2(0) = 0 by the more restrictive requirement that 11(0) = 0 and find that

the adjoint operator, defined on the same Hilbert space as before is

0 -1 0
* = EI d° 0 0
A" = pa dS* ’
2
-4 s 06 0
L S=0 =



with the associated domain

D(A") = {(31, 32, 4) €H(0, L) x H*(0, L) x IR,
y1(0) = O,M — d3y (L) o dy2(0)

a5 =0 gss = 0Tgg = wk

Thus we have established that A is skew adjoint. From (a real version of) Stone’s
theorem we then conclude that A is the generator of a one parameter group of unitary
operators.

We next consider the spectral properties of the operator A. We first observe that
this operator is closed. Next we would like to show that it has compact resolvent. To
show this we note that D(A) is embedded in H since H*(0, L) x H?(0, L) is embedded
in H2(0,L)x H°(0, L). By the Sobolev embedding theorem (see Yosida [1971], p.174, or
Adams [1975]), we know that this embedding is compact. Hence the resolvent (sI—.A4)*
is compact for any real s.

To find the transfer function associated with the system we will use spectral repre-
sentation theory to compute the resolvent. We compute the eigenvalues and eigenfunc-

tions of LA. The eigenvalues and eigenfunctions satisfy
IA-A)z=0
from which z1, 2, and z3 satisfy the following three equations for 0 < § < L

222(5) = /\231(5),

El d4x1(5) _

_p—A 454 = A:Eg(S),
EI d2$1(0) _
—I—B- dS2 = /\1‘3

with the boundary conditions z,(0) = 0, d*z(L)/dS* = 0, d3z4(L)/dS® = 0, and the
compatibility condition dz3(0)/dS = z3. Substituting the first equation into the second
we get

EI d4:l:1(5) 2
—_—— = . 3.56
L) = var(s) (3.56)

We already have three boundary conditions for this equation, we get a fourth by using
the compatibility condition in the third equation

EI&2,(0) _ \,d21(0)
Is ds* " TdS
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The general solution for (3.56) is of the form
21(S) = & cos(BS) + & sin(BS) + € cosh(BS) + &4 sinh(BS). (357
Substituting this into (3.56) we conclude
2= ——E—fﬂ“. (3.58)

Using the first boundary condition z1(0) = 0 in (3.57), we have & = —§£3 which

enables us to eliminate £5. Thus, we have

z1(.5) = &1(cos(B8S) — cosh(BS)) + &2 sin(BS) + &4 sinh(5S5),

which we will differentiate three times

D5) — 6 8(sin(6) + sinh(85)) + 8 cos(8S) + EuBeosh(BS), (359
P21() 1 (con(5S) + cosh(85) - €26 sn(8S) + 457 sinh(55), (3.0
L21S) - 6,6°(sin(65) — sinh(85)) - 6° cos(85) + €uf° cosh(8S).  (3.61)

The remaining boundary conditions can then be used with these expressions to give
26 = X6 +60) (3.62)
0= ~3(cos(SL) + cosh(5L)) ~ & in(BL) + Exsinh(6L),  (3.63)
0 = & (sin(BL) — sinh(BL)) — & cos(BL) + &4 cosh(BL). (3.64)

Using the expression for A in terms of 3 and solving the first of these equations for

& we have

3
b= IQBpi (&2 + &)

Substitution into the remaining two equations gives two equations in &, and &4

3
IBﬁ (Eg + &4)(cos(BL} + cosh(BL)) — & sin(BL) + €4 sinh(BL),

B.Ba
—( o

0__

(cos(BL) + cosh(BL)) + sin(BL))&2

Bﬂa

( (cos(ﬂL) + cosh(BL)) — sinh(BL))Es, (3.65)

(fg + &4 )(sin(BL) — sinh(BL)} — &3 cos(BL) + &4 cosh(BL),
Bﬂ3

13»33

( (s n(BL) — sinh(BL)) — cos(BL))é:

Bﬂs (sm(ﬂL) — sinh(BL)) + cosh(BL))&s. (3.66)

+(5
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For these equations to have a nontrivial solution for &, and & we require that the

determinant be zero. Thus 3 satisfies

0= (Bﬁs

(cos(BL) + cosh(BL)) + sin(BL))

( B;Bs

(sm(ﬂL) — sinh(BL)) + cosh(BL))

( Bﬁ3

(cos(ﬂL) + cosh(BL)) — sinh(SL))
( Bﬂ3

(sm(,BL) — sinh(BL)) — cos(BL)).

Expanding this and canceling terms we obtain

Bﬂs

0= (cos(ﬁL) + cosh(BL))(cos(BL) + cosh(SL))

353

—(sin(fL) — sinh(AL))(sin(AL) - sinh(5L))
— sin(BL) cosh(BL) + sinh(BL) cos(BL),
= IBﬂ3 (1 + cos(BL) cosh(BL))
— sin(BL) cosh(BL) + sinh(8L) cos(4L). (3.67)

In general there are a countable number of # which satisfy this equation, subsequently

we will denote these by 8,, n = 1,2,.... The countable number of 3, give rise to the

set of discrete eigenvalues, A, = %1, /%ﬂ%.
We note that for Ip = 0 (3.67) reduces to

sin(Bn L) cosh(B,L) = sinh(BrL) cos(BrL),
which is the equation for a hinged-free rod. For Ip — oo it reduces to
~1 = cosh(8,L) cos(BnL),

the equation for a clamped-free rod.

Solving for &2, and &4 in a particular solution have

IBﬂ?. . X
& = (sm(ﬂnL) — sinh(8,L) + cosh(6,L),

B,Bg

&y = (sm(ﬂnL) — sinh(B,L)) — cos(B,.L).

64



From which we can compute

IgB

& = 5 (cos(BrL) + cosh(BnL)).
A

Substitution of these into the expression for the eigenfunctions gives

IBi" (co8(Bnl) + cosh(BnL))(cos(BnS) — cosh(5,5))

Pn(5) =
165 , . , '
+ (m(sln(ﬁnL) ~ sinh(8, L)) + cosh(B, L)) sin(3,5)

3
_ (%@f(sin(ﬁnl)) — sinh(8,L)) — cos(B,L))sinh(5,5). (3.68)

where we have denoted the lefthand side of (3.56) by ¢,(S5).

From the above we conclude that the eigenvalues are given by

EI

Ap =44 oa P n=12,...
and the associated eigenvectors by
$n(S5)
on = | Tiy/ELBen(S) | | (3.69)
iy [ELGL 440 (0)

Note that the spectrum is discrete as we expected.

We need to show that the set of eigenvectors form a complete, orthonormal set in
. In this we follow standard techniques. For A = ), equation (3.56) is satisfied by ¢y,
in which case if we multiply both sides by ¢,, and integrate from 0 to L we get

4
3 [ puisipmis)as = [ ELL2y (5)a5

_EI d2¢n(o) dém(0) /L EId¢, d¢m
pa dS? dS o pa dS% dS?

ds,

where we have integrated by parts and exploited the boundary conditions. If we now

interchange n and m and subtract

: _ B1d%a(0) dn(0) _ EI &9 (0) déa(0)
(*i‘gﬂ)/o PolS)m(8)dS = o e Tag T pa ds? dS

- - AL (20 ()
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where we have used the fourth boundary condition. Thus, we conclude

L
Ig d¢n(0) dé, (0)
wb dS — “B 2 0) COmID). :
/0 ud on dS a5 70 n#m
and also
d2¢n P ém
A 75T 5T ds =0 n # m.
From the above and the definition of the norm we conclude
n _my _ cfl, if n=m;
(@ )‘{o, if n # m. (3.70)

where ¢, is a constant which can be used to normalize the eigenvectors.

We now have everything we need to compute the transfer functions associated with
this model. In what follows we will compute two transfer functions, the first is an
example of a colocated actuator and sensor, the second an example of a noncolocated
actuator and sensor.

From spectral theory, we know that the semigroup associated with the generator

A can be explicitly computed as

[ee]

et = Z et tx™ z)a”,

n=-—0oo
where =™ is the eigenfunction associated with the n-th eigenvalue and g is an initial
condition. An expression for the transfer function follows easily from the above
= 1

C(Is— A)'Bm(s)= ) -

n=-—0oo

B*z™) (Cz™)m(s). (3.71)

We can use this expression to compute explicitly the transfer function for this example
using the inner product on H and the eigenfunctions computed above.
Explicit computation of eA*z, is as follows, we assume that zg = (x(l) a:f)z) a;ff))T €

D(A) is the initial condition, then from our definition of the norm

d2 nd2 (1)
(", z0) = L /0 EI d:?z d52 +ipa( n¢n) () g

+ %iIB(\/_ﬂ3 (cos(B,L) + COSh(ﬂnL)))x(B)

= a, + ib,,.
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where we have defined

d2¢ &2z (1)
. | n
a, = 5,/; EI 752 dS2 ——dS, (3.72)

b = L t El , (2) 1 El s (3)
n=15 [ pa(y/——Bnén)zy dS.+ 315(4y/——PBn(cos(BnL) + cosh(BnL)))zg" .
0 pPAa Pa
(3.73)
We then have
e Hz™ zo)a™ = (an + ib,)(cos(Ant) + isin(Ant))z™.
Note that z_,, = &, and A_, = A, and furthermore x¢ is real. Thus, we can write

ety = ZRe(e’\"t(w",wo)m"),
n=1
(an cos(Ant) = by sin(Ant))dn(S)

_ i —(bn c08(Ant) + an sin(Ant)) 1/ ELB26,(S) (3.74)
n=1

—(bn, cos(Ant) + @y, sin(Ant)) % 3(cos(BrL) + cosh(B,L))

We say that we have a colocated actuator and sensor if external base torque is the
control and a measurement of rigid body base rotation rate is available. In this case the

output will be y(¢) = z3(t). The bounded operator C is then a matrix
=[0 0 1].

Note that B* = IEIC, and in this sense the C matrix is adjoint to the B matrix, a
general property associated with colocated actuators and sensors.

Using the expression for the transfer function (3.71) we can write

= 1 1 EIg; d¢n(0))( EI B}, d¢n(0))

- -1 —
C(Is—-A)™B 2IB pAc pAc

n=—00

_ i S 1 EIﬂ d¢n(0) om0 y2y 5
- $2—AXIg" pa c2 "t

n=1

- Z 52 :/\E’ B Ipcl “5(cos(BnL) + cosh(BnL))".

which describes the effect of an input torque on the angular velocity of the rigid body
at the base.
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Figure 3.1. Planar Rigid Body and Flexrible Appendage Experiment.

For the model in the case when the sensor is an accelerometer which is not colocated

with the actuator we have a slightly more complicated model. In this case, for the
accelerometer output

> 1

CIs~ A7'B= )

n=-—0oo

= Z A ’an (cos(BrnL) + cosh(B, L))pn(L)

24 Elps
11.:1'9 +PAﬂ"IBc

1 [EIgdgn(0),
8—/\,,-2_.[_3—(1 PA-C-: ds )’\n¢n(L)

where ¢,(L) is (3.68) evaluated at the § = L. This is the transfer function describing

the response of the acceleration at the tip of the appendage to torques applied to the
rigid body at the base.

Example of an Aluminum Beam and Hub

We can illustrate the model for this section by considering a laboratory experiment
(see Frank [1986]). Consider an aluminum disk which has one degree of freedom so
it can rotate about it’s central axis. To this disk we attach (clamp) a long, flexible

aluminum beam. This configuration is illustrated in figure 3.1.
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The inertia of the disk, which we will subsequently call the hub is easily computed
from its dimesnsions. This particular hub is of radius r = 11.4 ¢m, with a thickness of
t = 0.87 cm. For aluminum, the weight is w = 26.6 kN/m3. The mass density can be
computed from the weight, thus py = 26.6 x 10%/9.806 = 2.71262 x 103 kg/m>. The
total mass of the hub is therefore M = pywr?t, or 0.8971 kg. In this case, the inertia
about the centeris I = M—';, which in our case can be computed to be 5.427 x 1073 n{%

We next consider the parameters associated with the aluminum beam. For alu-
minum, the modulus of elasticity is £ = 71.0 GPa. The dimensions of our beam in em
are 0.30625 x 4.826 x 1000.0 where we have assumed a length of 1 meter. The bending
takes place in the z — z plane.

The geometric inertia about the y-axis is computed
. oy, 5, ba®
I=/di=/ / xd:z:dy:b/ zéder = —
4 -4 /-4 -3 12
Thus, for the dimensions of our beam

_ (4.826 x 107%)(3.0625 x 107%)°

-1, 1010 m?
12 1.185 x 107" m

I

And it follows that, ET = (71.0 x 10%)(1.155 x 1071%) = 8.201 Nm?
The linear density of the aluminum is the mass density times the cross sectional

area
pa=pvA=(2.713 x 10%)(3.0625 x 107°)(4.826 x 1072) = 0.401 kg/m

We have now computed the physical parameters we need. Note that in SI the units of
the ratio Ep! will be N_l:;li.

In table 3.1 we have tabulated the first few solutions to (A.7) for several values
of hub inertia. Note that for large hub inertia the values compare favorably with that
of a fixed free beam (although we still have the eigenvalue at zero associated with the
hub). For negligible hub inertia, the values compare favorable with those of a hinged

free beam. The values associated with the hub inertia in our case compare favorably

with the empirically determined values reported by Frank.

69



Hub inertia, Ip = 1.0 x 1076
n=1 P,L=00 Az, =00 f=00 Hz
2 3.926 417 69.724 11.097
3 7.068  +i225.93 35.958
4 10.209 44 471.32 75.013
5 13.348 41 805.83 128.25

Hub inertia, Ig = 5.4 x 1073

n=1 BnL =0.0 Airn = 0.0 f=0.0 Hz
2 3.550 +1 57.008 9.073
3 5.419 +: 132.79 21.134
4 8.021 +7 290.97 46.309
5 11.054 +7 552.55 87.941

Hub inertia, Iz = 1.0 x 10°
=1 BoL=00 Agn=00 f=00 Hgz
1.875 +7 15.901 2.531
4.694 +4 99.647 15.859
7.854 +: 279.01 44.407
10.996 +i 546.76 87.019
Table 3.1. Rigid Body and Rod Modes

Tt s W N3

3.5.3. Nonshearable, Inextensible Rod with Rotatory Inertia

In this section we will consider transfer functions for the nonshearable, inextensible
rod. Our model is that of a rod with a rigid body attached to the base. As in the
previous section, we again assume the mass of the rod is small compared to that of the
base mass. In this section we allow the rod to have nonzero cross section inertia and
the associated rotatory inertia effects.

For this model we will assume that deformation is restricted to lie in a plane,
control torques will be applied to the rigid body, measurements will be tangential tip

acceleration. For this model, if we linearize first about the trivial equilibrium, we get;

doydoy

Ia2a(s,t) 02a(0,t) _ [° 71 32a(0y,1)
o T e Jy PR, o1
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Oza(S t) 8%a(0,1)
with the associated boundary conditions at the base
d%*a(0,1) 0a(0,t)
and at the tip
0%a(L,t) 0% a(L,t)
I, FT R ErI 557 = 0, (3.77)
gt _ (3:78)

08

Note that the dynamics in the boundary condition at the base couple the rigid body to
the rod. This equation couples the dynamics of the rigid body to the rod by balancing
the moment at the base. An important feature of this model is that the assumption
of no shear requires the cross sections to be perpendicular to the line of centroids of
the rod. Consequently, the tangent vector to the line of centroids will be normal to the
cross sections for our model.

The measurements at the tip of the rod will be tangential to the tip displacement
(about the equilibrium). Thus

2 (T
y(L,1) = / Pa Lol alol) 4, (3.79)

represents the linearized acceleration measurement.

This system is equivalent to an Euler-Bernoulli type system with rotatory inertia
which can be obtained by substituting a(S,t) = du(S,t)/0S into (3.78) and differen-
tiating once with respect to S. For such a system we pick up an additional boundary

condition, u(0,t) = 0 and obtain a fourth order partial differential equation in .5, and ¢,

3*u(S,1) o*u(S,t) . 9'u(S,1) )
Bl tPa—a = loggpe (3.80)
with the associated boundary conditions
2
w(0,1) = TULD _,
3u(0,1) 8%u(0, t) 33 3
Ip~——=—"2 - BT = m(t), u(L,t) 8°u(L,t)

2S0o1? a05? EI 353 =l oo 95012

71



This system, along with the measurement equation can be recast in state space repre-

sentation. We first define z1(.9,1) = u(S,1), 22(S,t) = ———auéf’t) ,and z3(t) = 6231:(3?) |s=o-

We let these take values on the Hilbert space
M = {(21,22,23) €H*([0, L], IR) x L*([0, L], IR) x IR; z1(0) = 0},

endowed with the inner product,

L 2 2
Par(8) & (S) | da(S) dua(S)
— 1 1
(w’y>"2jﬁ {EI asr a5t Th s Tas

+ PA$2(5)?/2(5)} dS + 3Ipz3ys

As before this inner product corresponds to the energy norm. The Hamiltonian for
this system can be written as H(z1,22,23) = (x,z) where the terms of the integrand
correspond respectively to the potential, rotational, and linear kinetic energies of a
point on the rod. The last term outside the integral corresponds to the rotational
kinetic energy of the rigid body.

Note that in general one needs an additional state to describe the dynamics of the
cross section. However, in our case the condition of no shear reduces the cross section
dynamics to an algebraic constraint. Consequently, the normal for each cross section
is always parallel to the tangent to the line of centroids at each point on the line of
centroids.

Equation (3.80) can be written in terms of the three equations,

61‘1

—a—t" = 2, (381)
I, 9* 0z,  EId'z
(=2 355 = ps 55% (382)
2
dz‘g _ EI) Z1 1 m(t) (383)

@ 15088 |, Ts
This system can be written as the operator equation

I‘%;E = Az + Bm, z = Cz, (3.84)

where the operators A, B, and C are as defined in (3.55). In addition we now have the

operator, I': D(T') — H where

1 0
T=|0 1-24 0], (3.85)
0 0 1



with the natural domain of definition

dz,(0
5=
Note that D(A) C D(T') and T is a second order differential operator. In the domain

DIT)={z¢€ L2([0,L],1R) X H2([07L],m) x IR;z,(0) = 0,

of definition, two initial boundary conditions are specified for z,. Such an initial value
problem is always solvable in a unique way from which fact we infer that I'"! exists.
Thus we can recast (3.84) in the form of (3.55) by deﬁning A=T"1A,and B=T"1B.

We can take the inverse of the operator (1 -~ as ) in order to move it to the right

hand side of the second equation. Thus, for functlons f(S5,t), and g(S,t) we have

(1- -I—;gz)—l (5,t) = —-cosh(\/-S)f(O 1) — \/-' nh( PAS)(‘?fa((; ,1)
+ ; Sillh(\/?;_:T(S—U))g(a-)da.

The inverse operator is a convolution, an elementary result. Furthermore we can
identify the kernel of the integrand sinh( %(S —0)) as the Green’s function associated
with the differential operator I'y,.

The boundary conditions associated with this system at the base remain the same

as in the previous section. we recall these modeled the physical condition corresponding

to no displacement, z1(0,t) = 0, and the compatibility condition, z3 = 6"';1,;) A coupling
the rigid body to the base of the rod.
At the tip of the rod we still have the condition -Q—%LS(-QI—’—O- = 0 because of the absence

of any external force. For the equation modeling the moment at the tip we have

Par(Lt) 0 dm(L1),
85 ”as ot
I, EId'a(L,1)

Pas((l 652) l(_'_; 5514 ))’

EI

which is the remaining boundary condmon.

We can recast this in the form of a state space representation by defining

r 7 r A
0 1 0 0

A I, & \-1EI d* B —
A= —(l—zim) on 45T 0 0 s B=|,0
2 1
Bal 0 o &




with the associated domain of definition

D(A) = {(z1,22,23) €H*([0, L], R) x H*([0, L], IR) x IR;
d:llg(O) dle(L)

fL‘l(O) =0, ds = I3, a2 =0,
053 - pA padS padS? dS4) ’

With the above definitions we have shown that the system can be put in the form
of (3.55). The next question is whether or not A is the generator of a semigroup. As
in the previous section our first step is to demonstrate that A is skew adjoint. As
in the previous section we begin with (:B,Ay), perform suitable manipulations to put
this in the form (A*m,y), and from this identify the adjoint operator A*. Thus, using

(3.81)-(3.83) in the expression for the inner product we have

~ d*z,y d*y d 1, d* _ E‘Id z dy
(Azy)= 1} | Efdsfd—s‘zl"*'fpgg((l 2 ) e
EId :1:1 EI d%z,
+pa (1 - £ ) ( )yZ dS+ IB(I dS2 )y3a
dzy d? d3 Lg
= ZEI{ a5 sz |, ~ IS +/0 Ty
+I dys d(( I, d2) (dml))L d*z, dy, |*
4 dS dS pa dS? ds? ds |,

a2y i, 1- L L) yas,

dst
dz d2y1 d ahn L /L d* e
= d
EI{ a5 ds7 |, TPrass |, T ), Trase ©
d3z, dz, dy, L d2171 d2y2
s e A ds

ds |, T ds ds|, ~ J, ds? ds?

1, d .
e dsz) (d )) dS2 s 0”3}’

where we have made extensive use of integration by parts, as well as the fact that
1 I d2 )1dx1____1£_13{2_1_£_d )_1d4m1L
/0 (1= agz (1= pA d52 dSt ~ " p4 dS padSt’ dSt|,

I, I, & _jdz; |" /L diz
‘p_ﬁ”ﬁ((l pads?) sty t ), was ¢

Furthermore, note that
d n I d2 - d U1
agi o ds = / S ds2 === st g
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L 1d41/1
= 1i- £ =
/o - ds2) a5+ %245

I, d? I, d* _ld 0
- /0 A dsz(( o 457 d54 25107245,
L1, a8 L d d'y; |F
= 1 - -12 % _ -1 yl
/0 ( padS?’ 45t 72 dS - (( pA d52) ast’
L 2
I, d I e  _,d* d'y;
/ s\ o e age) et )m ds.
Using this in the expression for (z, Ay), and rearranging slightly, we find
~ d*z; d*(-y,) d dz EId*
_1 1 Y2 & ars 1 n
(Az,y) = 2/0 EI ds?  ds? + I”dS ds (- PA dSZ) (p ds )
1, EI d'y L EJI d2y1
+pA$2(1 dsg) ( ds4 )ds+ 2IB$3( IB dS )
dzry d? dy d*zy dzyg d*zy
3E
T ET { ds s |, T ast as |, T asr | Y

d T I d2 Eld 2}1

3
—(dd—glm I "52> ("’“))2

}.

To satisfy (Az,y) = (z, A*y) we need to verify that the terms in braces in the
above expression are zero. This can be done by using the boundary conditions and
defining a suitable domain. For the first term in braces we note that at § = L, we
require d?y;/dS? = 0 to assure the term is zero. For the second term observe that
d*z1/dS?* =0 at § = L. At § = 0, we can combine it with the third term and require
y3 = dy2(0)/dS. The fourth term can be made zero at § = 0 if we require %(0) = 0,
at § = L this term is zero because of the boundary condition modeling the moment at
the tip. Conversely, the fifth term is zero at S = 0 since 3 = 0, for S = L this term
becomes zero if we require (—a%L -(1- —& dS ) (%%%%‘-)).

As before we note that we have that y,(0) = 0. This implies that y;(0) is equal to
a constant. However, for the domain to be a vector subspace we need this constant to

be zero. Thus we replace y2(0) = 0 by the more restrictive requirement that y;(0) = 0
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and find that the adjoint operator, defined on the same Hilbert space as before is

0 -1 0
x I, d?> \-1EI d*
At= | (A-hde) 7 dse 0 0,
EI d*
Ty 452 0 0
L 5=0 d

with the associated domain of definition

D(A*) = {(y1, 2, y3) €H*((0, L], IR) x H*([0, L], IR) x IR;

o dp(0)  dPu(L)
y1(0) =0, 15 Vg =0
Py (L, 1) I, d&* _,Eldy,
EI==22 o~ (1~ & = .
853 I"dS(( pa il pa dS* )}

Thus we have established that A is skew adjoint. From Stone’s theorem we then
conclude that A is the generator of a unitary group.

We next turn our attention to the computation of the eigenvalues and eigenfunctions
associated with this problem. These will subsequently be used when we employ the
spectral theorem to compute the transfer function. For this case the eigenvalues and

eigenfunctions satisfy

Azq = 29, (3.86)
_ I, &  _ Eldiz
Azg = —(1 - ” d52) TR (3.87)
EId*z,
A(L‘3 = E 452 S=0, (388)

with the four associated boundary conditions;
da.’l?l(L)
dss3

EI d2:v1(0) = 2 d:l:l(O), __Eif.dsih(L) = )2 dzy1(L)
IB ds? ds I, d§3 as

xl(O) = 0, = 0,

The first three equations are the same as in the previous section, the fourth is
obtained from (3.85), (3.86) and the boundary condition associated with the moment
at the tip of the rod. Note that this condition is essentially the same as the boundary

condition for the moment at the base of the rod.
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From the first two equations associated with the eigenvalue problem we can obtain

an expression for x4
I, d*z, EJ d*z,

2 -— = e ————
A (:L’l L dS? oA d54 (3.89)
This equation can be solved by assuming a solution of the form
z1(8S) = & cos(118) + & sin(y1.5) + & cosh(72.5) + &4 sinh(y2.5). (3.90)
From the conditions at the base we can eliminate two of the §;, thus
0= II?](S) .
5=0
=&+ & (3.91)
from which we conclude &3 = —§;. From the second condition at the base
0= )‘2 dil)l .._E_I d2.’lfl ,
dS $=0 IB d52 $=0
2 Er 2 2
= A (6o + &) + —I;(&“n +&172) (3.92)
which gives an expression for £,
Mg &om + by
= - . 3.93
Substituting this into the expression for z; and rearranging we find
z1(9) = )‘ZIB —————=(cosh(725) — cos(711.5)) + sin(711.5))é2
"EI 2 + 2
+ ()‘—2—12- (cosh(y28) — cos(719)) + sinh(7,5))&s.  (3.94)
Foli 71 + 2 72 N 72 4. .

Now we can use the boundary conditions at the base to find &, & in the above.

We have,
d2$1
o)
('\ IB (73 cosh(12L) + 7} cos(m L)) — 71 sin(1 L))&:
EI 2 + 242
+ (A IB 5 (1% cosh(72L) + 71 cos(11 L)) + 73 sinh(y2 L))£4, (3.95)
EI ’71 ’72
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daxl _ /\2Ip d(L‘l
ds¥|s_, " ET 45 |,

’\IB 2! ) .

PRl S’nh(wL)—vi‘sm(wL))—vfcos(vlL))sz

Ap
BT 72 + 2(72 sinh(y2L) — 97 sin(y1 L)) + 75 cosh{,L))é

/\21 /\213 7
F CE g (b (L) 4 71 sn(oy 2)) 71 cos(1s L)

AT
E]B = + : (y2sinh(y2 L) + 7, sin(y1 L)) + v, cosh{ L))§4}.(3 96)

These equations have a nontr1v1al solution for &;, and £; when the determinant of the

0=

coeflicient matrix is zero. Thus, we require
AT Alg

BT 72 + 2(72 cosh(v;L) + 77 cos(11L)) — 42 sin(71 L))
/\ IB 3 . 3
BT 72 + 2(72 sinh(72L) — 97 sin(y1.L)) + 73 cosh(7; L))
22T ,\213
- EI” ET 7T+ 2(72smh(‘rzL)Jr’hsm('nL))+7zcosh(711)))}

Mg
~ (7 75 cosh(32L) + 9% cos(. 1)) + 73 sinh(1,))

AT
{ EIB = + 7 (72 cosh(y2L) + 71 cos(y1 L)) + 72 sinh(y2 L))

A? I, )‘ Ip 71 . )
- EI\ EI 712 + 722 (72 Slnh(72L) +1n Sln(7lL)) + 7 COS(’)’]L))},

- Mgy,
EI(')’l + ’72)
— N3 (72 cosh(v2 L) sin(71 L) + 71 cos(y1 L) sinh(7, L))

AT, MIgyy,
~ B Bl {3t - 22 + (4 - 78 cosh(a) cos( L)

{vi‘ +72 + 2917 cosh(n2 L) cos(11 L)y172(72 — 72) sinh(72 L) sin('nL)}

~ 7172 sinh(y2 L) Sin(’hL)}

= 7172(7 cosh(y2 L) sin(y1 L) — 72 cos(y, L) sinh(y2L)). (3.97)
Since this is an equation in three unknowns A; 71, and 73 we need two more equa-
tions. These equations are obtained by substituting the expression for the eigenfunctions

into the original expression for z; and equating coefficients. Doing this we obtain
0= Mps+ NIy} + EIVS, (3.98)
0=Ap4s—~ A4 + EIVS, (3.99)
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from which

1,
_a LA £ =1 (3.101)
thus v, and 7, are related to each other as
pa(i - 1) = Lnivs.- (3.102)

The eigenvalues can be computed from (3.96), (3.99), and (3.100). Note that for I,, we
have 92 = 4, in which case (3.96) reduces to the expression of the previous section.

From expression (3.100) we have that

EI
A= Eimm [ =, (3.103)
PA

which is the expression for the eigenvalues, in this case all of which lie on the imaginary
axis. This expression is analogous to (3.67). As before we denote the n*" eigenvalue by
An and similarly denote v; » and 73 .

From equations (3.95) and (3.96), along with (3.97), we can solve for &, and &4,

AT
&= (7 f 72 + 2 (73 sinh(72 L) — 7 sin(11L)) + 73 cosh(72 L))
1
)\2] AT
T F I,, E IB " + 2 (v2sinh(y2L) + 71 sin(y1 L)) + 72 cosh(71 L)),
AT
=~(gr 712 IB ) + y (73 cosh(72L) + 73 cos(11 L)) + 73 sinh(72 L)), (3.104)
1
Mg
€= —( ET 2 + +E (73 sinh(y2L) — 75 sin(y1 L)) — 73 cos(11L))
i
NI, N . .
EIP E]B = _: =(v2 sinh(y2L) + 71 sin(y1L)) + 71 cos(11L)),
1
AT
= (514 T3 (0 cosh(1al) + 9 cos(m £)) = 9 sin(n.L)). (3.105)
1
Using these in the expression for z1, the first component of the eigenfunction we find
AT .
z1(5) ( B 211 >(cosh(725) — cos(115)) + sin(715))
A IB h(yo L
T + 2(72 cosh(y2L) + 77 cos(11L)) — 7z sinh(7, L))
A2 IB -
+ ( 2 + ? (cosh(728) — cos(715)) + sinh(725))
)\ZIB .
(ET 72 + 2(72 cosh(y2L) + 73 cos(1L)) = 73 sin(71 L)).(3.106)
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From the equations corresponding to the eigenvalue problem we can now obtain an

explicit expression for the elements of the eigenfunction;

IE;(S) = ii7l,n72,n“ _zl (5)7

n . EI . .
23(8) = £i(nnr2,0)* g 2nsinh (72,0 L) = 71,0 sin(71,0L)).

We can now proceed to compute the transfer function for the case of the colocated

actuator and sensor as in the previous section.

Recall that
o0
- B*z™)(Cz™)
C(Is—A)'B = (B2")(Ca") .
(Is— A) n:z_:oo P (3.107)
We compute
B*z" — 1 EI d’z1(0)
Ig IgX, dS§? °
EI d%z,(0)
n_
Ce" = o ds?
Using the conjugacy of the eigenfunctions Rexz™ = Rez™" and Ima™ = —Imz~"

we can write

-1 B*a~")(Ca™—" B*z2™)(Ca™
cs-—ay= 5 P R,

B*z" Cm”s
E( )( )_

3.5.4. Nonshearable, Inextensible Rod in Rotating Configuration

If we assume that the rigid body with the nonshearable, inextensible rod is lin-
earized about a reference moving with a constant rate of rotation. From previous

computations we know that the equation in this case satisfies

8%

+¢/ p,,/ Wi¢day doy + EIZS, (3.108)
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with the associated boundary conditions at the base

[, 800 860,)

5~ El— g = m(1), (3.109)
and at the tip
7 9¢(L,1) 0%¢(L,1)
1, o - EI 567 = 0, (3.110)
6¢(L t)
~5g— = 0. (3.111)

By substituting ¢ = a , differentiating once with respect to S, and rearranging this
can be put in the familiar form
0*u *u Ou o 0%u
I____ 2 il =] — 21 ¢2
pagm T Bl +ra(S55 v = Loggrpm — a5 5gm

with the associated boundary conditions

0*u(L,t)

u(0,t) = 0, S5 = 0,
3 2
135' u(0,1) Ela u(0,1) = m(), 63u(L ) 0%u(L, 1)
0S0t? 05? 953 =1, 85012

The measurements at the tip of the rod will be tangential to the tip displacement
(about the equilibrium). Thus

O*u(L,1)

y(L,t) = ot2

(3.112)

represents the linearized measurement.
As before, we can recast this in the form of a state equation. If we define the
operator f(u) by

fw)= (S35 a" +152652), (3.113)

then we can define z, z3, and z3 as in the previous section. We first define z,(S5,t) =

u(S,1), z2(S5,t) = -""‘—g‘fﬁ, and z3(t) = 328’;(355’0|5=0. we let these take values on the

Hilbert space
M = {(z1,22,23) €H*((0, L], IR) x L*([0, L], IR) x IR; 21(0) = 0},

endowed with the inner product,

Li  day(S)Pu(S) |, dua(S) dun(S)
<m,y)=%/ {EI st dst VlTas ds

+pa(wS + 2SS + () }aS + Hpzom.
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As before this inner product corresponds to the energy norm. The Hamiltonian for
this system can be written as H(z1,zy,23) = (x,x) where the terms of the integrand
correspond respectively to the potential, rotational, and linear kinetic energies of a point
on the rod. Note that we have included the energy arising from the rotation of the rod.

This equation can be written in terms of the three equations,

%%l = 22, (3.114)
1L, 9 6x2 _ _EI 34:1:1
2

At T Ig 35|, I
This system can be written as the operator equation

rf’% (A + W*F)z + Bm, z = Ce, (3.117)

where the operators T, ', B, and C are as defined in the previous section. In addition

where f is as defined in (3.113).

The boundary conditions associated with this system at the base remain the same

we have the perturbation operator

[ N -]
SO O
[ BN e Y e}

] : (3.118)

as in the previous section. we recall these modeled the physical condition corresponding
81'2(0 t)

to no displacement, z1(0,¢) = 0, and the compatibility condition, z3 = , coupling
the rigid body to the base of the rod.
At the tip of the rod we now have
0%z1(L,1) 9, 0%1
i 3 Sl o =1
El 05? paw( S 21,
balancing the tip force. For the equation modeling the moment at the tip we again have
33z(L,1) I, 62 EI 34:1:1(L 1)
Bl = ”as((l 557 oa a5t )
We can recast this in the form of a state space representation by defining
[ 0 1 0 ] 0
~ L 42 ~_ 4 ~
A= |-(1-2f) &L+ 0 0 |, B=|0],
2 1
L His| o 0 | | 77 |
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d® \-1E] d*
[ (l‘fds) pa dS

0 0 ] (tip acceleration),
S=L
with the associated domain of definition

D(A) = {(z1,2q,23) €H*([0, L], IR) x H*([0, L), IR) x IR;

_ dxg(O) dle(L) _ 2 8221
#1(0) =0, =7~ = 73, =55 S T
Por(lt) _ L d L & d

957 = paas\t T paas) gt

With the above definitions we have shown that the system can be put in the form

of (3.55).

3.5.5. Nonshearable, Inextensible Rod with Rate Damping

We now consider a configuration consisting of a rigid body to which a long, flexible
rod is attached. As before we assume the mass of the rod is negligible when compared
to the mass of the rigid body. If we linearize about a nonrotating equilibrium and
incorporate Kelvin-Voigt type damping in the constitutive equations (see section 2.6)
then the equations of motion for the planer problem become

*u(S,1) " *u(S8,t) 4 d®u(8,1)

EI 561 PA™ 50 ¢~5513; =0, (3.119)
with the four boundary conditions
2
u(0,1) = 0, o%ul,) "a‘ng’t) =0,
0%u(0,1) 0%u(0, t) u
L,t
b 5550 — Pl =™ ——8(53 ) -0,

In the equation for the rod dynamics the additional term corresponds to a stress which
is proportional to the rate of change of strain.

In addition we will assume that we have measurements available for the tangential
acceleration of the tip of the rod. These take the form

o(t) = _EId'w(L,t) ¢ 8°u(L,1)
- pa 05 pa 0810t

As before we can recast this into the form of an infinite state space representation by
defining the states as in the case of the nonshearable, inextensible rod with no rotatory
inertia

du(S, 1)
85

8%u(8,t)

=3(50) = 55 :
S=0

21(5,1) = »(5,?), z2(5,t) =
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With these definitions the dynamics are now written

d:cl
dt
dey  Eld'zy ¢ d'z
dt T pa dST T p4 dSY°
dzs EId’z,

" T, 45t ls=o

= T3,

with the obvious definitions of the operators A, B.

Similarly, we define the Hilbert space H, on which & takes values as
H = {z eH*(0,L) x L*(0,L) x IR; z,(0) = 0},

endowed with the inner product

Ly d*xi(S) d* (S
(x,y) = %/0 {EI ;;(2 ) 3‘15,(2 )+PA$2(5)y2(5)} dS + 3Ipz3ys.

For this particular system the associated domain of definition is

D(A) = {($1,$2,1L‘3) €H4(O,L) X H‘Z(O,L) X B,

dle(L) _ d3:v1(L) dmz(O) _

452 = 0, = 0, = (Z?3}.

21(0) =0, a5° ds

For a discussion of the conditions under which this system generates a contraction
semigroup see Marsden and Hughes [1983], page 357. The relevant theorem is Proposi-
tion 3.12 in the cited reference. Note that a straight forward computation shows that
for ¢ > 0 we have %(z,z) < 0, corresponding to energy dissipation.

For this system the associated eigenvalue problem will be

Ty = /\271, (3.120)
EId*z; ¢ d*z,
Toa A5t T padst T (3.121)
EI d2$1
'I}'T[ST'S=0 = Az3. (3.122)

Substituting the first equation into the second we obtain an equation in z,

4
_ (EI/: AC) ‘fisx; = A2y, (3.123)
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Solution of this equation proceeds as before, we first assume a solution of the form
£1(S) = &1 cos(BS) + &2 5in(BS) + £3 cosh(BS) + £4 sinh(8S). (3.124)

Substituting this into (3.123) we obtain an expression relating A and . This can be

put in the form of a quadratic equation
EIB*+ Aef* + XMp4,

solution of which for A gives an expression for the eigenvalues in terms of 4

1-— 4pAl?I
204 2pa pret

Note that A is real for g > 5—”49&, and as expected, all the roots are in the left half

plane.

Next we exploit the boundary conditions to evaluate the ;. From the the base
condition z,(0) = 0 we have {3 = —¢§;. The second condition is found by substituting

(3.120) into the compatibility condition and using this in (3.122)

dml
ds

d2$1

| =1 peacz]
ds? |

Er

5-—
If we now use the expression for z; in this we find

Igi?
" 20EI

& (& + &)

Eliminating £; and & we can use the boundary conditions at the tip to obtain the

two equation in &; and &,

_ 2152‘:1(52 + &4)(cos(BL) + cosh(BL))
~ &2 8in(BL) + £4 sinh(BL), (3.125)
2
0= — 3256+ €)(sin(BL) - sinh(6L)
— &3 co8(BL) + €4 cosh(BL). (3.126)

These equations have a nontrivial solution for £, and £ when

0= I\’ ~——(1+ cos(BL) cosh(BL))

BEI
— sin(BL) cosh(BL) + sinh(BL) cos(BL). (3.127)
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In general there are a countable number of p which satisfy this equation, subsequently
we will denote these by 8,, n = 1,2, ..

Solving for &, and &, in a particular solution we get

2

£ = _2;BAEnI(sin(gnL) — sinh(8,L)) + cosh(B, L),

€4

T EI(sm(ﬂnL) sinh(8,L)) — cos(B,L),

and from the expression for £;

= L h(8,L
&1 = ~ 57 (c0s(BaL) + cosh(B, ).

If we denote the solutions for z; as ¢n,n=1,2,... then

Dn(S) = — 2; EI(cos(ﬁnL) + cosh(B,L))(cos(B,5) — cosh(8,95))

— (2,HnEI (Sln(ﬂnL) - Slnh(ﬂn.L)) + COSh(ﬂnL)) Sln(ﬂnS)
)‘2
+ (223 77 (8in(BrL) — sinh(BnL)) — cos(B, L)) sinh(8,,5).(3.128)
From the above we conclude that the eigenfunctions of our system are given by
én(S)
Mg

Subsequently we will assume that the eigenvectors have been normalized.

Note that for any n, Re(\,) < 0, while for 4poEI > Bic?, the roots are complex
conjugate. Furthermore, for 4p4ET < fB%c? the roots are on the real axis. For these
roots we will be interested in sup,, Re(),), the closest they get to the right half plane.

Therefore we consider the subsequence of roots which approach the origin along the real

axis )
_ C n; 4pAEI

Now, with a little manipulation

-1
4 4psET 4pEI
An =_°i(1— - dpall <1+ 1- P4 (1+ 1 2PA :

) 204 12 12 1 o2
-1
2EI 4 FI
= (1 + p4A 2
c ic
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Since the term in parentheses has an upper bound of 2 as ﬂ:; — 00 we can conclude

that
El

sup Ap = et (3.130)

The transfer function in this case is computed as
= 1
CIs-A)'B= ) T B & Can,

n=—o

where x; are the eigenvectors of A and &; are the eigenvectors of the adjoint system.
Computation of the transfer function relating the torque applied to the rigid body

to a measurement of tip acceleration is now straight forward. We first compute

1
),
S=0

B*z" = Tgms,n,

1 ( EI d2£L‘1n

T I5 \NIp 45T
1 EI d%z,, )
== |- : ; 3.131
Tn ( ‘s 482 |s_, (3.131)
Ca™ = — <EI+ c)\n) dizy
PA dst lsor’
= Az1,n (3.132)
S=L

Using the expression for the transfer function (3.71) we can write
c{ .s—A)_lB

- Z 2(5“ n)

i}_ (ConB'&" + Cz_nB8 ") + C2oB'3" Ay + C2nB'8"An)
2 82— (An+ A_n)s+ AAn)

1 dzy (3 +23) + A d_n (A2 +22))
T Ip dS g ooy = CutAon)s+XAln)

which describes the effect of an input torque on the rotational tangential acceleration

(3.133)

of the tip of the appendage.

In this expression we have;

% = Bn(cosh(BnL) + cos(BrL)),
S=0
IB/\2 . . 2
= - L nL - h TLL
21| =~ g5, pr(sin(BaL) - sinh(p )

+ cosh(B,L)sin(BnL) — cos(fnL)sinh(B,L),

87



tw

X 500
¢ =04 X
00 \ -
- 50 ' 500
"1
X + -500
N
Figure 3.2. Eigenvalues of a Damped Beam.
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Example of an Aluminum Beam and Hub
Again we can get a better feeling for the physical meaning of some of the results

of this section by returning to the model of the aluminum hub with attached beam. we
can make a reasonable guess at the value of the damping constant ¢ as follows; for a
particular mode the eigenvalues are the roots of

4 4
s, , BB

A PA
= 82 + 2(wns + W, (3.134)

0=s2+

where we have used the standard form for a second order system. In a control context
one refers to w as the natural frequency and ¢, as the damping ratio. From these

expressions we have;

Bic , [ET
w= 2 and wy = B[ —. 3.135
N oy (3.135)
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Hub inertia, Ip = 5.4 x 1073 kgm?, (; = 0.0

n=1 £, L=00 Ain = 0.0 =00 Hz
2 3.550 +¢ 57.008 9.073
3 5.419 +: 132.79 21.134
4 8.021 +7 290.97 46.309
5 11.054 +1i 552.55 87.941

Hub inertia, Ip = 5.4 x 1073 kgm?, {; = 0.02

n=1 Asn, = 0.0 f=0.0 Hz
2 —0.709 +:57.016 9.075
3 -3.361 +1:132.76 21.137
4 —27.070 £+ 289.66 46.302
5 —104.80 £ 542.48 87.935

Hub inertia, Ig = 5.4 x 10™3 kgm?, {; = 0.04

n=1 Arn, =00 f=0.0 Hz
2 —-1.419 +:57.038 9.081
3 —6.709 +:132.69 21.145
4 —54.141 £ 1 285.69 46.279

5 —209.61 +:511.08 87.916
Table 3.2. Rigid Body and Damped Rod Modes.

We can use the expression for (, to find ¢ for a given damping ratio associated with
a particular mode. If we use a constant ¢ for all n then the eigenvalues associated
with a particular n all lay on the real axis for 4p4EI > Bic? will all lay on the real
axis. Assuming a lightly damped beam we can compute ¢ on the basis of ; for and
undamped rod and a given (;. We have tabulated the results in table 3.2 for the rigid
body and rod we have previously discussed. These are solutions of equation (3.67) with
the physical parameters associated with the aluminum hub and one meter aluminum

beam of the earlier section.

3.6. Stabilization and Control

For the models which we have developed in the earlier part of this chapter a natural

question to ask is does there exist a control which will assure is of asymptotic stability?
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In other words can we always drive the state to zero?. In the general sense this is a
question which deals with the stabilizability of the infinite dimensional systems we have
obtained.

The answer to this question is yes. In Slemrod [1987] it is shown that a class
of saturating feedback controllers can always be found which will assure asymptotic
stability at the origin In this report the stabilization of a distributed parameter system
is investigated. In particular, two theorems are presented which establish asymptotic
stability of {0} for a class of saturating feedback controllers.

The systems considered by Slemrod have the abstract form;

d
71:; = Az + Bu, z = , (3.136)

with A an infinite dimensional operator defined on a Hilbert space H. For these systems

a feedback control of the form

u = G(x),
is used, where,
—rBB*z : *
2 , if||B*z||g >
G(z)={ 1BzlE (3.137)
-BB*z, if||B*z|lg<r.

In this case G(z) € H takes values inside or on the boundary of a ball of radius ||Bffr,
with r a given value. Here || - ||g is the norm on the space of inputs and outputs.

Slemrod proves the following theorem;

Theorem. (Slemrod, 1987) Assume that for each ¢ € H there is a unique weak solu-
tion
z(t; o) = T(t)zo, of (3.136) and (3.137) defined for all t > 0 with {0} a stable equilib-

rium. If in addition B is compact and the only solution of the equation
B*eAlp = 0 forallt> 0

is+ = 0, then x(t;x) — 0 ast — oo for all xyp € H.

Proof: The proof is based on a result of Ball and Slemrod [1979] which gives us condi-
tions for the weak solution to a semilinear equation. In the proof it is shown that
( i) G(z) is globally Lipschitz, in other words there exists a constant K such that
|G(z1) — G(=2)|| < K||®y — z2|| for all 21,22 € H,
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( ii) B compact implies G(¢,,) — G(%) when ¥, — ¥,
( i) G(¥) is dissipative, (G(¢), %) < 0.
These conditions are precisely the ones needed for the theorem of Ball and Slemrod
to be applicable. From the theorem, we conclude that for each @y € H, ww(zo) is a

nonempty, invariant set in H. Also, for each ¥ € ww (o)
(T, G(T()p)) =0 forallt >0

thus from the definition of G we have that B*T(t)s = 0 from which we then conclude
G(z) = 0 for allt > 0. But from the variation of constants formula, with G(z(5)) = 0 we
have B*T(t) = B*e”'s. This implies that 1 = 0 only so we must have wy (zo) = {0}.
One of course trivially has ||T(¢)zo]| < |20l

In the case of noncolocated actuators and sensors this theorem may fail. The
problem here is that the output operator C' may be unbounded. However, as it turns
out in our case z; € H?([0, L), IR) assures us that if we measure tip displacement the

operator C is a bounded operator. By definition,
€1l = sap ICel],

= sup [|z1(§)|s=tL]l

l=}=1

since 821(5)/8S € Ly([0, L}, IR), we have for z;(0) = 0,

L T
()i =y [ T e

L [ [F8zi(0)?
—L2\//(; 35 do,

11
=L2K2 < oo,

where K is a constant and we have used the Cauchy-Schwarz inequality. Thus we can
conclude that C is a bounded operator in the norm defined on H?([0, L], IR). Conse-
quently the results of the theorem of Slemrod apply when our output is a measurement
of tip displacement.

If however we want to use the measurement of acceleration the proof of the theorem
breaks down. In this case the tip acceleration can be expressed

0z, 2 8411

Bt sy Ap 05% sy
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which is clearly unbounded.
The second theorem of Slemrod’s gives conditions for the strong convergence of
(3.136) to zero. It is based on a result of Dafermos and Slemrod [1973] related to

nonlinear contraction semigroups.

Theorem. For each xo € H there exists a unique solution of (3.55) for all t > 0 with
{0} a stable equilibrium of (3.55). If in addition, E = IR, (A1 — A)™! is compact for

some A > 0, and the only solution of
B*e?p =0 t>0

is = 0, then x(t;z9) — 0 as t — oo for all o € H.

Proof: See Slemrod [1987].

We can use this theorem to find the stabilizing controls for the systems we have
considered. We will illustrate the application for the model in section (3.5.2), the other
models are treated in an analogous fashion.

For the systems we consider we have shown that they generate contraction semi-
groups on the appropriate Hilbert space. We have also shown that A1 — A has compact
resolvent by the use of the Sobolev embedding theorem. Thus, to satisfy the conditions
of the theorem it remains to show that for ¥» € H, and all ¢ > 0 that B*e®'sp = 0
implies 1 = 0. As we have remarked earlier this is an observability condition, a fact
that will be important below. For our model we will proceed in essentially the same
way as in Slemrod [1987].

We first note that if B*eAtap = 0, then (Bu,e?!y) = 0 for all u € IR, or if we recall
the definition of B this implies ul5'¢3(t) = 0, for t > 0, or ¢3(t) = 0 for all ¢ > 0. Thus
we would like to show that t3(t) = 0 with u € IR for all ¢t > 0 implies 1% = 0. This we
can do by explicit computation of eA*4 for ¥ € D(A).

We recall that;

00
e’“a:oz Z e)‘,.t(mn’m)mn,

n=-—0o

where ), is the n'* eigenvalue of A and ™ is the associated eigenvector (more generally

we need the eigenvectors of both A and A*.) For the this model we have previously

92



computed the eigenvectors to be,
én(S)
2" = | i/ EBadn(S) | | (3.138)
+4 £I ﬂZ d¢n(0)
As before we have
(z", :z:o) = an + tby,
with a, and b, as defined in section (3.5.3).

Proceeding as in (3.71), we compute the third component of eAtap,

I 2d¢>n

¥3(t) = Z —(bn cos(Ant) + an sin(A,t)) n G

From the uniqueness theorem of almost periodic functions, 93(t) = 0 if the coeflicients

on the right hand side are zero, i.e.

/ EI ,d¢,
ﬁn dS 07
/EI q ddn
an 4,35 |, 0.
We have ,/ ﬂn # 0forn = 1,2,.... The conditions under which d¢"l = 0 are

=0
found as follows; recall that for the nonshearable, inextensible beam with no rotatory

inertia the eigenfunctions ¢, (.S) was given by (3.57), i.e.,

$n(S) = €1(cos(BS) — cosh(BS)) + L sin(BS) + &4 sinh(BS). (3.139)

With our additional constraint we find that the second boundary condition at the base

now requires
d*
2
ds $=0

Differentiating the expression for ¢, once and evaluating it at 5 = 0, to satisfy (3.140)

= 0. (3.140)

we require & = 0. The eigenfunctions which satisfy our three boundary conditions at

the base are thus of the form;

#n(8) = &(sin(BS) — sinh(B3S5)). (3.141)
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If we now use the conditions at § = L, we find that we must have

0 = sin(BL) + sinh(BL),
and 0= cos(BL) + cosh(BL).

The second condition can never be satisfied, consequently we conclude % # 0.
0

Thus we must have a,, = 0, and b, = 0, in which case we conclude 1) = 0. T}fgs, with
our controls taking values in IR the conditions of the theorem are satisfied and we are
assured that there exists a saturating controller which will drive any initial state to zero.

In our case we can use the theorem to explicitly construct a control law. We first

observe
(z, Bx) = IBm3(y—3-),
Ip

—7.(%3
= IB(IB Y3,
= (B*z,y),

from which we conclude B* is simply the transpose of B. The function G(z) is then
straight forward to construct.
— Lsign(es()), if B8 >
G(z) = (3.142)
—Fa(t), if 20 <7,

Of course the actual design of such a control must take into account more than
just stabilizability. In this regard we note that within the radius r of the origin the
feedback control is linear. Within this region we can contemplate the application of
a linear feedback control methodology to do the design. (However, keep in mind the
system is infinite dimensional). One such methodology which we may wish to apply is
the so called Lo, technique of Curtain and Glover [1986] which is discussed in chapter
5.

Comparison of Some Models

Slemrod considers a special case of a model due to Bailey and Hubbard [1985] which
describes the dynamics of a cantilever beam with a tip mass and inertia. This beam
was assumed to have a control torque at the tip. The dynamics are described by

0%u(S,1) _
a

84 u(S, 1)

Er 561

+ A, 0, for 0<S<I, (3.143)
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with the boundary conditions at the base,

ou(8,1)

WS, =0, =0, 3.144
5=0 a8 $=0 ( )
and at the tip
%u(S,1) u(S,1)
gt | ., = M aser |, H/W
3 2
EIB u(S,1) _ Mﬁp@ u(S,1) .
053 |sop ot jep
(3.145)
Slemrod defines the 4 state variables;
w(S, 1) = u(S, 1), o(S,t) = ?—"%—t—),
du(S,t) %u(S,1)
t)y= ——— ,y bt)= ——= .
W=, "= g5 |,_,

where w corresponds to the configuration variable, v is the velocity density, a is the
velocity of displacement at the tip, and b is the velocity of rotation at the tip.

The model which we have used in this dissertation is that of a beam which is hinged
at the base and free at the tip. In addition we have assumed that there is a rigid body
attached to the base which has mass and inertia. Since there is no longer a mass at the
tip in our model our boundary conditions at the tip reflect the absence of any external
torques or forces (in other words the right hand side of Slemrod’s boundary conditions
for the tip are zero in our case.) At the base we have the boundary condition u(S,t)|s=0,
the same as Slemrod. However the remaining boundary condition reflects the dynamics
of our base mass and is given by

33u(S,1) _ EIaQu(S, t)

el \u ' = f(t).
Toase 55502 50 857 |o_, 1)

To summarize, the difference between the model used by Slemrod, and that dis-
cussed in this chapter is the location of the rigid body at different ends of a hinged—free

beam.
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CHAPTER FOUR

STABILITY

The notion of stability is fundamental to the study of dynamical systems. Knowl-
edge of the stability of an equilibrium provides important insight into the local structure
of the phase space. From a physical standpoint an unstable system can have undesirable
and even catastrophic consequences. Consequently, an understanding of the stability of

the equilibria is essential to the control system design.

There are many definitions of stability, the one we will be mostly concerned with
here is that of Liapunov stability (Liapunov, [1947]). The basic idea of Liapunov stability
is that, for any given point near an equilibrium, an orbit passing through that point
remains near the equilibrium. Of course this presupposes we have enough structure

associated with the manifold to quantify this notion.

In addition to the stability of an equilibrium we will be interested in extending
these concepts to reduced phase spaces. In a loose sense we can think of this as stability
of the steady state. In the analysis of fluids and plasmas one deals with the reduced
spaces corresponding to fluid flows, ignoring the positions of individual particles (Holm,
et.al. [1983]). In particular, Arnold [1965,1966] was able to formulate a methodology
for investigating the Liapunov stability of planer ideal incompressible fluid motion. In
recent years this technique has come to be known as the energy-Casimir method and
has been used to study MHD, multifluid plasmas, and the Maxwell-Vlasov equation
(Holm, Marsden, Ratiu, Weinstein [1984].) Classical stability results for the rigid body
and heavy top were reproduced by Holm using this technique.

A natural application of this technique for infinite dimensional mechanical systems
is that of the rigid body with flexible appendage as was investigated by Krishnaprasad
and Marsden [1987]. Interestingly enough, in more complicated models of this type,

using geometrically exact rod theory, the Casimirs which are crucial to this technique
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are unknown or do not exist. As a consequence, a more general method called the
energy-momentum method is currently employed in investigations these models (Mars-
den,Simo,Posbergh,Krishnaprasad [1988].)

In this chapter we will first present the classical notions of stability, recast in the
geometric setting. We will also show how these notions are extended to the reduced
systems. In the second section we will describe the energy-Casimir method, and a more
recently explored method called the energy-momentum method. In the last section we

will apply this technique to the case of the linear extensible shear beam.

4.1. Fundamental Stability Concepts

To discuss stability we must first define precisely what we mean. Several intere-
lated concepts of stability will be of interest with regard to assessing the stability of
Hamiltonian systems. The most important concept is that of nonlinear or Liapunov
stability of an equilibrium point. The idea of stability in this case is that an equilibrium
point is stable if an orbit passing through a point nearby remains in the vicinity for all

subsequent time. We will also be concerned with two other concepts of stability.

Definition (4.1): An equilibrium point is called linearly stable relative to a norm ||6x||
provided that for every € > 0 there exists a § > 0 such that ||6x|| < § at ¢t = ty implies
16x|| < € for t > ty where éx evolves according to d(éx)/dt = DX (x.) - 6x

In this case we are applying the stability criteria to the linearized system. We
note that spectral stability, which requires that the spectrum of the linearized operator
DX(x.) have no strictly positive real part, is implied by linear stability. However, the
converse is not generally true. In finite dimensions, a sufficient condition for linearized
stability is that DX(x.) have distinct eigenvalues on the imaginary axis. In infinite
dimensions, a sufficient condition for linearized stability is that DX (x.) have a complete

set of eigenfunctions with purely imaginary eigenvalues of multiplicity one.

Definition (4.2): An equilibrium solution x is formally stable if a conserved quantity
is found whose first variation vanishes at the solution and whose second variation at the

equilibrium is positive or negative definite.

Formal stability implies linearized stability, however the converse is not true. For-

mal stability of fluids and plasmas has been investigated by many researchers (see Holm,
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et. al.[1983] and the references therein).
Nonlinear or Liapunov stability quantifies the notion that if x¢ is an equilibrium
point then the flow through a nearby point remains for all time in the vicinity of the

equilibrium point. More precisely, we have the following (Abraham & Marsden, [1978],
p.737).

Definition (4.3): Let xo be an equilibrium point of the vector field X. Let ®(-) denote
the flow of X. Then;
(i) xo is stable in the sense of Liapunov if for any neighborhood U of x¢, there is a
neighborhood V' of xg, such that if x € V, then ®,(x) € U for all A > 0.

(i1) xo is asymptotically stable if there is a neighborhood V of xq such that ifx € V,
then ®,(V) C ®,(V) ift > s and

t_lé_lgloo ®,(V) = {x0}, (4.1)

(i.e. for any U, xg € U, thereisa T s.t. ®,(V)C U ift > T).

Neither linearized nor formal stability is sufficient for nonlinear stability. (see Holm,
et. al.[1983] for counter examples). However, in finite dimensions, formal stability im-
plies stability. In infinite dimensions this is not generally true and there exist physically
meaningful counter examples (as in Ball & Marsden [1976]. Generally one neeeds ad-
ditional convexity estimates to extend formal stability results to establish nonlinear
stability.

In addition, the relative stability of a dynamical system is frequently of interest.
In this case we consider a reduced manifold M, and the associated Hamiltonian H, as

defined in chapter 2.

Definition (4.4): Let (M,w) be a symplectic manifold and G a Lie group acting
symplectically on M and leaving a Hamiltonian H invariant. Under the conditions of
(4.3.1) and (4.3.5), a relative equilibrium x € M is relatively stable if m,(x) is stable
for the induced dynamical system Xy, on M, where m,(x) appears as an equilibrium

point of Xg,.
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4.2,

The Energy-Casimir method

The energy-Casimir method is a technique based on an original idea of V. I. Arnold

and used in his investigation of the stability of a planer, ideal incompressible fluid

(Arnold, [1965), Arnold, [1969]). These nonlinear stability results extended the classical

linear theory of Rayleigh. In this analysis, Arnold adds a conserved quantity C called

a Casimir (see section 2.8) to the energy of the system, the Hamiltonian. The Casimir

term is kinematic in the sense that it will be conserved for any Hamiltonian system.

The Casimir is chosen so that H 4 C is stationary at a critical point. Finally, convexity

estimates for H + C were used to establish rigorous nonlinear stability.

(i)

(i)

(iif)

(iv)

More precisely we have the following methodology:
Choose a manifold M, and associated bracket { -, - } such that the equations of

motion can be written in Hamiltonian form
F={F H} (4.2)

where H is the Hamiltonian of the system and F is an arbitrary function defined
on M. We recall H is a conserved quantity, dH(®; o z)/dt where F}; is the flow
through some point x¢.

Find a family of constants for the motion of (4.2), that is C such that dC(Fy o
xo)/dt = 0 Note that for any F defined on M we have {F,C} = 0. These functionals
may be associated with symmetries of the Hamiltonian. In general, the larger the

family of C the better, however we may not be able to find any C.

Next take the first variation 6(H + C) of H 4+ C and relate this to a critical point
of (4.2) by requiring that H + C have a critical point at x,

Take the second variation, 62(H + C), to examine formal stability of the system.

In certain cases, such as finite dimensional systems the definiteness of the second

variation is sufficient to establish formal stability.

In general, as we have remarked earlier, formal stability will be insufficient to

establish nonlinear stability. In that case we need to proceed with the following two

steps.

(v)

Construct convexity estimates. Find quadratic forms @1 and 2 on M such that
Qi1(Az) < H(z. + Az) — H(z,) - DH(z.) - Az, (4.3)
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Q2(Az) < C(z. + Az) — C(z.) — DC(=,) - Az, (4.4)
for all finite variations, Az in M we require

Q1(Az) + Q2(Az) > 0, for all Az in M, Az # 0. (4.5)

(vi) With this definition we have, for any solution =(¢) of (4.2) the a-priori estimate
on Az(t) = z(t) — x.(t),

Q1(Az(1)) + Q2(Az(1)) < (H + C)(2(0)) — (H + C)(=.(2))- (4.6)
(vii) Nonlinear stability is established as follows; We set

VP = @u(v) + Q2(v) >0, (for v #0), (4.7)

which defines a norm on M. If H 4+ C is continuous on this norm at x., and
solutions to (4.2) exist for all time x. is stable. If on the other hand solutions to

(4.2) are not known to exist for all time, we still have conditional stability.

We note that a sufficient condition for continuity of H + C is the existence of

positive constants Cy, and C; such that

H(z.+ Az) — H(z,) — DH(z.) - Az < C]|Az|]?,
C(z. + Az) — C(z,) — DC(z.) - Az < Cq|| Az

From which we construct the stability estimate: for all Az(0) in M.
1az(0)]F = Q1(Ax(1)) + Q2(Az(1)) < (C1 + Co)l| Az (0)]*. (4.8)

The assertion of the stability estimate is proved in Holm, et. al [1983].

The standard example for the energy-Casimir method which we use to illustrate
the procedure is the stability of rotation of the rigid body. Arnold showed that the
classical results of rigid body motion were reproduced by this method. This example is

discussed at length in Holm, et.al. [1983].
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4.2.1. Energy-Casimir analysis of a rigid body

In this section we consider the example of a free rigid body. In particular we wish
to asses nonlinear stability about the equilibria associated with a freely rotating rigid
body. This example is standard and will serve to illustrate the energy-Casimir method
and it relationship with the energy-momentum method. For the rigid body we have the

configuration space C = SO(3), with the Hamiltonian given by
H=1im.J-'I (4.9)

where IT € s0(3)* is the convected momentum vector and J~! is the time invariant
inertia matrix.

Observing that H is invariant under spatial isometries we we can reduce it by this
symmetry. Physically this means that we ignore rotation by considering the reduced

phase space P = T*S0O(3)/50(3). The Lie-Poisson bracket on this space is
{F,G} = I . (V,F X V) (4.10)

(see Simo, Marsden, Krishnaprasad [1988] for details).
We note that
Co = 34(/ITT|I%), (4.11)

is a family of Casimirs for this system since, for any F

{F,G} = -I1- (§'TL x V. F),
=-TIx ¢'II-V,F,
= 0. (4.12)

If we add this Casimir to the Hamiltonian and take the first variation,
§(H+C)=J""I1- 611 + ¢'(||TT||*)IT - 611. (4.13)
The conditions for §(H + C') = 0 can be written
@+ 14/ (Ij*)m =0 (4.14)

which is in the form of an eigenvalue problem. Clearly, there are three values of ¢’

(A1, A2, A3) and three associated values of II. These correspond to the inverses of the
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principle values of inertia of J and the associated directions. The three values of II
correspond to the reduced equilibria of the rigid body.

Taking the second variation
§2(H + C) = J716II - 6TI + 24/ (J|TT||*)(TI - 6T1)* + ¢'(||TT||?)6IT - 611. (4.15)

Since this is finite dimensional we need only establish formal stability to ascertain the
stability of rotations about particular equilibrium. Thus, we seek ¢” which make §2( H +
C) positive or negative definite while at the same time satisfy 6( H + C) = 0. Since J~!
is symmetric we can transform it into a diagonal matrix. In this case J™!P = PS where
P =M, 1®, 1®), and S = diag(A\;',A; %, A7), Thus for ¢’ = A7Y, IT = I we

have for positive definiteness the requirement
0< (A;1 = AT1)6TIL, - 6TT, + (31 — A[1)6TI5 - 6105 + ¢"(3|ITID)|2)610, - 6T, (4.16)
which is satisfied for
Az <M A3 < A #(z) = (=2/M)e + (2 - 3)*

implying that rotation about the longest axis is stable.

Similarly, for rotation about the shortest axis we require
/\3 < Al /\3 < /\2

and choose ¢(z) = (—2/A3)z — (z — §)? to assure that 62(H + C) < 0

Note that in the above we were able to find a Casimir and exploit the freedom it gave
us to establish positive or negative definiteness in establishing formal stability. Suppose
however we were unable to find a large enough family of Casimirs or any Casimirs at
all. Such is the case for the convected representation of geometrically nonlinear rods.
Similar results have been reported by other researchers in the area of compressible
Euler plasma described in spatial coordinates [Marsden)]. In this case we employ a more
general method known as the energy-momentum method. This method is discussed in

the second half of this chapter.
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4.3. Energy-Casimir Examples

In this section we apply the energy-Casimir method to the example of the linear
extensible shear beam attached to the rigid body. This example was discussed earlier
sections 2.8 and 3.2. Recall that we consider a rigid body to which a long, flexible
appendage is attached. A coordinate reference frame is fixed in the rigid body with the
origin at the center of mass of the rigid body. The flexible attachment is assumed to lie
along the second coordinate axis when the configuration is at rest. We note that this
section is an extension of the analysis done in Krishnaprasad and Marsden [1986]. In
what follows we work in the convected representation.

We are interested in the stability of the system about equilibria points. Recall that
these equilibria will satisfy,

or . Loy or
0—Jwa+aXKas"=0—1‘(L)XK82+/0 EEXKECIS, (417)
0=p;'m+rXw, (4.18)
2
0= Ka2+mxw. (4.19)
Two boundary values are associated with these equations,

or 0 0

— = 11| =ey, and r =la| =a. (4.20)

9s s=L 0 5=0 0

We now proceed to carry out the first steps of the energy-Casimir method to verify
formal stability.
4.3.1. Computation of the First and Second Variations

In this section we compute the first and second variations of the Hamiltonian plus

the Casimir function, H + C4. From the previous definitions of these we know

L 3
H=1I"pp+l / o3 im(s)|1? ds + / k.o S ds, (4.21)
and the Casimir function may be taken to be
Cy = $o(llp+ / r x m ds|]?). (2.2)

We will denote the first and second variations by §(H + Cg), and §2(H + Cy). Note
that because of the distributed nature of the system we are dealing with we will need

to compute variational derivatives instead of ordinary gradients.
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4.3.1.1. Computation of the First Variation
For the first variation we get

T

L L 2
§(H+C¢):J‘1p-§p+/ p;lm'6mds—/ Kg?-érds
0 0

L L
+o(lal)a-Gp+ [ rxomdss [(orxmas),  (422)
0 0

= 'p+ 4 (lal*))- 6p
L
/0 (pam + ¢'(J|la||®)a x v) - bm ds

g &*r ' 2
/0 (_KEJ - ¢'(||la)|*)a x m) - ér ds. (4.23)

where we have integrated by parts and used the vector identity a X b-c =a-bx c. At

an equilibrium we require §( H + Cy) = 0, which is satisfied for

¢'(lef]*)a® = —w*, (4.24)
¢ (le]?) a* x 7¢ = —pzim?, (4.25)
e e € azTe
¢'(lle°l*) @ x m* = -K—, (4.26)
where w® = J71p®, and .
o = p° +/ ¢ X m® ds. (4.27)
0
We use the superscript e to denote evaluation at an equilibrium. If we dot (4.24) with
a® we have
(lae)?) = -2 4.28
#(lec) =~ (4.29)

Physically, the first condition implies that rotation takes place about a principle
axis of inertia of the extended inertia matrix. If we substitute (4.28) into (4.25) and

(4.26) we get

0= p;lme —J71p® x re,
62re

-1,¢€ e
542 —J7 p® xm°,

0=K

which are exactly the equilibrium equations in Krishnaprasad and Marsden [1987]. Us-

ing the second of these equations in the definition of a we get
L
af = p°+ / 78 X pa(J™1p® x 7€) ds,
0
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L
=p® - / par® x (v x J71p%)ds,
0
L
= Jw® - / pa(flrt]*1 — r* ® r*)w" ds,
0
= Joow?,

where we define the extended inertia dyadic as

L
Joo=T— / pa(|7é|]’1 — ¢ @ r¢) ds.
0

4.3.1.2. Computation of the Second Variation

For the second variation, the starting point is the expression for the first variation.
The terms arising from the original Hamiltonian are straight forward to compute, they

are

(3 p-6p)=J3"16p - bp, (4.29)
L L
6(/ paim - émds) = / palém - bmds, (4.30)
0 0
L 2 L 2
0°r 0%ér
6(/0 K@'&' ds) =/0 K 522 - érds. (4.31)

Note that we can use the boundary conditions on é7 to get

L_ o%r L__9sr a6r
'/0 K'a? . 51' dS = —./0 K—E.—S— . —ag—ds (432)

Next we consider the component which arises from the Casimir function which we added

to the Hamiltonian. From the first factor of this term we compute,
L L
56'(a) = 28" ([l]]?) @ - (6p + / r x §m ds + / brxmds).  (4.33)
0 0

From the second factor of the Casimir term we compute

L L
6(&-(6p+/ rx6mds+/ §r x mds)) =
0 0

L L
||6p+/ rx6mds+/ ér x mds||?
0 0
L L
+2(p+/ 'rxmds)-(/ 6r x émds). (4.34)
0 0
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We use the above to get the expression for the second variation

S(H+Cy)=J"4p- 6p+/ plém - 6mds+/ K(?;—:— %ilds

+2¢"(I|a||2)(a-(5p+/ rxémds+/ ér x mds))?
0 ]

L L
+ 8 (lellep+ [ xemds+ [ orx mds]?
0 0

+2(p+/0L'r><mds)-(ALérxémds)}. (4.35)

4.3.2. Computation of a Stability Criterion

If we evaluate the second variation at an equilibrium we can derive conditions which
assure the stability of the equilibrium. In the following sequence of steps we demonstrate

how this is done.

Step 1 : Evaluate the Second Variation at an Equilibrium
Recall the second variation. If we use the above to substitute for ¢'(||a®||?) in this

expression and rearrange slightly we find that

§2 (H+ Cy)pe,remey = I~ Lép - 5P+/ palém - 6mds+/ K—a%’: %td
we. L
- o 6“2 I P+/ r° X émds + 6r><m ds||?
_2“’_'_0‘7,,8.(/ 67 X m ds)
lle]l 0

L L

+24"(lec|?) (e - (6p + / v x Smds+ | 6r x m®ds)),
0 0

(4.36)

which corresponds to expression (5.5) in Krishnaprasad and Marsden [1986]. In that

paper, ¢ is required to satisfy the condition:

we . ae
2]jee])*’

¢"(le®]*) = (4.37)

which is consistent with (4.28). In the following development we impose no conditions
on ¢"(]|@®||?) at this time.
Step 2: Ezpand Terms Containing ép
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We first note that the fourth and sixth terms in (4.36) can be expanded. For the

fourth term we have

—T;alT | P+/ r° ><6mds+/ 6r X m®ds||?
_w®-a® 5p- bp
flael”
e L L
-~ T;eIT -/'rex6mds+/ o0r X m®ds)
| TE ||/ 7€ x&mds-{-/ ér x me ds||?, (4.38)
ae

while for the sixth term,

L L
2¢"(Jle”]?) (e° - (6p+/0 7¢ X 6m ds+/0 §r x m® ds))?
= 2¢"(||a||*)(e° - ép)?

L L
+ 44" (Jla®[?)(e® - 8p) (o .(/ ¢ X bm ds +/ §r x m® ds))
0 0

L L
+2g/(laf|)e ([ v x mds 4 [ rxmeasy.
0 0
(4.39)

Step 3: Collect Terms Containing 6p

Now, collect together terms in which the quantity ép appears. Our expression for

the second variation at an equilibrium can then be written

e .

e L L
62(H+C¢)=[J'16p-6p— ‘ﬁ ITz(ép-ép+26p~(/ rexémds+/ or x m*ds))
af 0 0

L L
+ 2¢”(|Iaellz){(a°’ -6p)* + 2(a® - ép)(a° - (/ ¢ X §m ds +/0 8r X m® ds))}}

w -af
Jle|”

+ 26" (||le®||*)(a® - (/0 r¢ X dmds + / 61 x m&ds))?

o e f” g dér 08
—2¥ a20ze'( 6rx6mds)+/ 2lém - 6mds+/ KT 20T 4.
llec|| 0 0 0s Os

(4.40)

L
H re x6md.s+/ ér x m®ds||?

Step 4: Complete the Square
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The term in square brackets which contains the ép terms can be rewritten

- we-af e e
[ . ] =31 - Wl +2¢"(le*||*)a® ® a®)ép - bp

w -a

e L L
||ae||2 1+ 24{’”(||‘er“2)‘-‘¢'Z ® a®)ép - (/0 r® X dmds +/‘; §r x m®ds).

(4.41)

+2(-

In this expression we use ® to denote the tensor product and 1 the identity. Note that
a® ® af is a tensor of rank 2. We can complete the square for this expression provided

the quantity
1 we . af

- 2
[|eee |l

14 2¢"(|lef]?)e’ ® o, (4.42)

has an inverse.

We next assume this inverse exists and define the two symmetric matrices M and

N by,

MM =J"1- ﬁl +2¢"(||e?]|*)et @ a®,

21, (4.43)
NTM = - S 20 e et @

£qQ.. (4.44)

Completing the square for the term in brackets we now get
L L
[} = || M6p+N(/ r® X 6mds+/ 6r x m®ds) ||?
0 0

L L L L
—NTN(/ 'rexémds+/ 57'Xmeds)~(/ rexémds—i-/ ér x m®ds).
0 0 0 0
(4.45)

The term in braces is bounded below by a perfect square when NTN > 0. For this to be
the case we need to assume that the inverted matrix, J;! is positive definite, in general
it need not be. Note that this assumption will impose conditions on ¢"(||e?||*). The
requirements on the parameters in this matrix to assure it is strictly positive definite will
be expressed in the form of inequalities. These inequalities will be the first conditions

that we need to assure stability.
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Step 5: The Reformulated Second Variation

The second variation at an equilibrium is thus of the form

62(H+C¢) = (square)

L L
- NTN(/ ¢ X 6mds+/ ér x m®ds)
0 0

L L
(/ rexémds-f-/ br x m®ds)
0 0

€. at L L
T ”(/o r° X dmds +/(; ér x m®ds)||?

L L
+ 2¢>"(||ae||2)ae ® ae(/ ¢ X émds + / dr x m®ds)
0 0

L L
(/ 'r'ex6mds+/ r x mfds)
0 0

.of L L
ad azae.(/ 6rx6mds)+/ p;lam-amds+/ g aor oo .o
llee]] 0 0 0

ds 0Os
(4.46)

Where we note that

TN = (- 2% 42 (jef|P )t © o)
lo]”
(7= St 2 e @ at) - S+ 26" (oot @ ),
llee]| flo |l
_q..0. (4.47)

Step 6: Collect Integrals of Cross Products
Collecting terms containing the integrals of cross products the second variation can

be written
§*(H+Cy) =  (square)
L L
- (QeJeQe — Q. )( r® x émds + / or x m®ds)
0 0

L L
(/ rexémds-{—/ ér x m®ds)

v 06
a® (/ 6r><6mds)+/ pilém - 5mds+/ Ka" %"d

(4.48)

e .

Ilaell
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Step 7: A Vector Identity

Observe that a simple vector identity enables us to write

w® - a /L /L of - w*
af - r X émds)=2 ——a® X é7)-bm ds
T )=2 | G )

L e €Y,,,€
=2 / 6mTS((a”;€Z?”,}2—)6r ds, (4.49)
0

where we have used the skew-symmetric matrix S(x) associated with the cross-product

0 —I3 T
S(X) = T3 0 —Z1 1 . (450)
—ZT9 Z1 0

Step 8: A Quadratic Form

Now define the symmetric matrix

R£2Q.J.Q. - Q.. (4.51)

We will see below, that an eigenvalue estimate relies on having R nonnegative definite.
We thus require that conditions on the parameters of the problem and ¢"(||a¢||?) hold
such that J7! defined in (4.43) is positive definite and R defined in (4.51) is nonnegative
definite. The latter will assure that R has a square root R/2, We will examine these
assumptions again in remark 2 below.

Expanding the second term in (4.48), we can re-express it as a quadratic form,
L L L L
R(/ 'rexémds+/ 6rxmeds)-(/ rexémds+/ or x m®ds)
0 0 0 0

L L
- / / R(S(r*(s))m(s) — S(m*(s))dr(s))
- (8(r¢(0))ém(c) — S(m*®(0))ér(0)) ds do,

=/0L /OL[ng(s) 6rT(3)][__S;’—;((:;(es()s)))]

RISr() -S(me(o))]| o) | dsdo
= ’ - mT 8 TT S T S g 5m(0) S a0
= [ 1m0 7 @1aT0A@ 5] s (452

We now can find a lower bound on the above. The bound we want is obtained from

an eigenvalue inequality which we introduce by way of the following lemma
Step 9: An Eigenvalue Inequality
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Lemma 4.5. Let A(s) € L}*™(0,L), and x(s) € L}(0, L) then

L L L L
/ / xT(s)AT()A(0)x(c) dods < / T (s){ / 102(0) do}x(s)ds,  (4.53)
0 0 0 0

where A?(s) is the maximum eigenvalue of AT(s)A(s).

Proof: Let || - || denote the standard norm in Euclidean space and also the induced

matrix norm associated with it. Then
L (L L L
/ / xT(s)AT(s)A(U)x(a)dadsg/ / IxT(s)AT(s)A(0)x(0)| do ds,
o Jo o Jo
L L
< [ [ 1a@xel iaexe))doas

L L
S/O lA(s)] IIX(S)HdS/0 (o)l [x(o)]| do,

where we have used [|A(3)x(s)|| < [|A(3)]|]|x(s)]|. We can now use the Schwarz inequal-
it
N L 2 L 2 L 2
([ 1a@lxas? < [“laifas [ P
Finally noting that the value of ||A(s)|| is simply the square root of the maximum

eigenvalue of AT(s)A(s) establishes the result. g

If we let A%(s) be the maximum eigenvalue of

ST(r%(s))RS(r*(s)) —ST(re(S))RS(me(S))}
, (4.54)

AT(s)A(s) = [
—ST(m°(s))RS(r(s)) ST(m(s))RS(m(s))

and let A% = fOL A%(s) ds then we have by way of lemma 3.1 a lower bound on the second

variation

D*(H + C)(pe,re,me) = (square)
L . rL
- X / émTém ds — N? / érTér ds
0 0

L e €Y, €
-2/ smTs(( XL s
0 llae||

L T L_ a6r oér
-1 .
+ /0 pa dm’dmds+ 4[) K—as 59 ds. (4.55)

Step 10: A Poincaré Type Inequality
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If we assume that K is diagonal and use a Poincaré-type inequality

0ér 0Oér L
KT DT s> e :
/ 35 Be ds /(; Kér - érds, (4.56)

with ¢ = (55)%, then the second variation can be bounded below as
D*(H + Cs)pe,reme) 2 ( square )
L L
- ,\2/ smTémds - /\2/ §rTérds
0 0
€ €
-2 / smTs(( L&) 5 g
0 lleell
L
+ / pirémTémds + ¢ / §rTK 67 ds. (4.57)
0 0

Step 11: Rewrite The Lower Bound

We can reformulate the lower bound in a clearer form as follows

D*(H + Cy)(pere,me) > (square)

«f CEE e [ } [6m] 244.5%)
0 —ST(‘ﬁ‘ae“ow) K — 132 or or '

If we define the matrix

pil1 — 152 -S(4 |a¢|| we)
, (4.59)

D(p®,r*,m®) = :
ST( lla°112 w*) cK — 1)\?

then we can state the following theorem;

Theorem 4.6. If the matrix R = Q.J.Q. — Q. defined in (4.51) exists and is non-
negative definite, J. defined in (4.43) is positive definite. and the matrix D defined in
equation (4.59) is positive definite, then the system described by equations (4.17)-(4.19)
is nonlinearly (formally) stable at the equilibrium point (p€, r¢, m*).

Remark 1: This result establishes only formal stability, since it is based on the the
definiteness of second variation. To establish rigorous stability of the nonlinear system
one generally needs to examine convexity estimates as is done in [2].

Remark 2: Note that if Q! exists and we use the matrix inversion lemma we obtain

the following

(Q;1 + J)—l = Q. — QeJQe,
= —-R. (4.60)



Recall that we already have an assumption of nonnegative definiteness on R. Thus we

need to specify conditions on the parameters and ¢"(]|@?||?) such that

J714+Q. >0, (4.61)
F+Q7Ht <o, (4.62)

which are the same conditions as R > 0 and J. > 0. In the examples of the next section
Q. is singular.
Remark 3: A better result can be had by observing that AT(s)A(s) is frequently in the
form of a block diagonal matrix

AT(s)A1(s) 0

AT(s)A(s) = , (4.63)
0 Af(s)Ak(s)

where 0 < k < 6 and because of the semidefiniteness of ATA(s) some of the diagonal
blocks may be zero. If welet A?(s) be the maximum eigenvalue of AT (s)A;(s),0< i<k

then we can define

Pal -S(faifre)] 14 0
D' = - .. : (4.64)
-ST(S20w*) K 0 132

Thus, if the conditions of theorem (4.6) are satisfied and also the matrix D’ defined in
equation (4.64) is positive definite, then the system described by equations (4.17)-(4.19)
is (formally) nonlinearly stable at the equilibrium point (p®, ¢, m?®). In theorem (4.65)
this will mean the special choice A%(s) = max{A%(s),...,A%(s)}.

4.3.3. Some Examples

In this section we apply theorem (4.6). We will assume that that the linear extensi-
ble shear beam lies along the same direction as the second principal axis of inertia of the
rigid body. From geometric considerations the position of the shear beam will cause the
principal axes of the rigid-body-shear-beam configuration to lie in the same directions
as those of the rigid body. In this case the addition of the shear beam will have the
effect of increasing the moments of inertia about the first and the third principal axes.

Because the linear extensible shear beam cannot deflect laterally the principal axes of

113



the of the configuration remain fixed for any longitudinal extension of the shear beam.
Thus, for this configuration there are three axes about which the equilibria can exist.

These axes will correspond to the three principal axes of the rigid body.

4.3.3.1. A Trivial Equilibrium

The simplest case to be considered is when the rotation takes place about the axis

along which the linear extensible shear beam lies. In this case the equilibrium will be

W = wE &, (4.66)
7% = (a3 + ) é; 0<s<1LI, (4.67)
m® = 0. (4.68)

This describes the linear-extensible-shear-beam being unstretched.

What follows is a special case of the second variation computed in Step 1 of the
previous section. In this and the following example we will assume ¢"(||a¢]|?) is the
same as in [2], thus recall from (4.37) that if this is the case then

we'ae

¢"(lefl*) = 577
2|l

And the two quantities, J;1, and Q., which we define in Step 4 are

€. af at ® at
R S 1- 4.69
: foel? \' ™ ToelP /) (469)
we . af a® @ a®
= — 1- . 4.70
@ =~ (- o) (470
For our example, if we first compute
o’ = jaw; &, (4.71)
then
@Tu® = in(ws)?,  and  aTaf = jhws), (4.72)
from which we immediately compute
eneT 0 0
1-22 =10 0 of, (4.73)
aTa 0 1

114



and finally,

[ _J11jeo 0 0
-1 J22—J11 .
Jo = 0 J 0O |, (4.74)
0 0 e
L J22—J33
[ 0 0
J22
Q=0 0 0 } . (4.75)
0 L
L J22

For J. to be positive definite we require jo2 > 711, and joa > jazz. This will assure
positive elements along the diagonal in the inverse above.

Thus, the quantity Q.J.Q. which appears in the reformulated second variation of

Step 5 will be,

e e ene -1 e e ene
Q.3.Q. = (J—l _ae, % T)) <(“ Wy e T))

atTac - acTqe (aeTo:e)z - atTac
1 -1
o 000 L0 0 F 00
=[[0 # O0[-]0 0 0 0 0o 0]],
1 A 1
0 Ta3 0 0 J22 0 0 iz
[dudz g 3 0 0
Je2=ju J22
= 0 J22 .0' 0 0 0 ’
1
== LA ~
-J'22 .7'2;1—.7'11 0 0
= 0 0 0 , (4.76)
L 0 0 .1'222.7'223—.7'335

where we have used equation (4.47) and the fact that J. and Q. are diagonal.

We also need the skew symmetric matrix which appears in Step 7. Thus, we

compute
, 0 0 wj
S(ZFzw®) = 0 0 0/{. (4.77)
-w; 0 0
Now we compute R, which is defined in Step 8.
aeTwe aeaeT
R=Q.J.Qc+ aﬁ’a_e(l - ;;T‘;e—)’
o y 1
_ J22 jza—jn g g J + l'% g 8 } ,
j 1
L 0 0 J22 .123 —J33 0 0 J2z
e — 0
=™ o o |, (4.78)
0 0 —X
L J22=J23
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which, along with the definition of S(-) in (4.79), we can now use to compute

jzzijsa rgz 0 0
ST(r&)RS(r®) = 0 0 0 , (4.80)
0 1 ,,.e2
Jez—Jun 2
ST(r®)RS(m®) = 0, (4.81)
ST(m®*)RS(m*) = 0. (4.82)

These matrices are used to form the matrix AT(s)A(s) in (4.64), note that it has only
the two nonzero elements (computed in (4.81)). These correspond to the first and second
diagonal elements. Hence, AT(s)A(s) is a diagonal matrix and the nonzero eigenvalues
are these two elements. As a consequence we will use the modified bound described in
Remark 3. Thus, the eigenvalue inequality is easily obtained.

After using the Poincaré inequality of Step 10 we proceed to the final step and
construct the D’ matrix in (4.64). If we define,

1 1 L 1 1 L
dll = p_ - —————/ ré¢ds d3 = p— - —__/ r: ds
A J22 — J33 Jo 2 ’ ° A J22 — J11 Jo 2 ’

this matrix is

dn 0 0 0 0 —ws
0 p3t O 0 0 0
0 0 dsz W 0 0
D=1 0 0 wf (&) 0 o |- (4.83)
0 0 0 0 (Z)%ky 0
| —ws 0 0 0 0 CA

To assure that the D’ matrix is positive definite we require
b
Je2 — Ju > PA/ 3 ds, (4.84)
0
L 2
J22 — Jas > PA/ ;- ds, (4.85)
0

and also,

) ky > (w)% (4.87)

TN TN
'b ‘b

L
— /0 ) )k > (@)% (4.86)

L
/ £2 ds
.722 —Ju Jo

116



Physically the first two conditions are classical stability conditions on the stable axes
of rotation for a rigid body. The term on the right is the additional inertia due to the
flexible appendage which adds inertia about both the first and third axes. The second
two inequalities are conditions on the admissible rotation rates of the configuration.

They have an interesting physical interpretation.

4.3.3.2. A Non-Trivial Equilibrium

For the second example we will consider rotations of the rigid-body-shear-beam
configuration about the first or third principal axes of inertia. We will examine the case
when the rotation is about the first principal axis of inertia, rotations about the third

axis are similar. This corresponds to the example in Krishnaprasad and Marsden [2].

w® = W &y, (4.88)
sin(,/%2wfs)  cos( wi(s— L))
ré(s) = +a é,, (4.89)
wa cos( £a wa)
sin(, /£2 wls cos( Mwe(s - L))
&s. (4.90)

™) = pac \/_“‘"1 e cos(\/-wleL)

In these equations we have 0 < s < L. For simplicity we will denote the nonzero element
of r as r5, and that of m as m3.

We first compute

L
af = jijwy +/ remg ds &, (4.91)
0
thus
L
aTw® = (ot + / remg ds)wst, (4.92)
0
L
aTaf = (juwf + / réms ds)?. (4.93)
0

Subsequently we will denote the first element of a by a;. We now compute

aeaeT

0 0 O
aa 0 0 1
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and finally, J;! and Q. defined in Step 4 are

(]—.}7 0 0

0= | 0 ufiny 0o 1, (4.95)
[0 0 gz
0 0 0

Q. =|0 3 0. (4.96)
0 0 4

L o)

For J;! to be positive definite we require
o1 > Jaowy, and oy > jaswr. (4.92)

These conditions will hold if j3; > j22, and j1; > jaz3 and will assure positive elements
along the diagonal in the inverse above. These conditions are the same as (5.10) in [2].

Then from equation (4.47) we have

eT. e 1/ (aeTwe)? eqel
Q.J.Q. = (J_l - ZeT:e (1- aeTae)) ((aeT:e)) Ze:ae )>’
L o0 o0 00 o\ ([0 0, O
_ [0 L 0}_[0% OD L R
\lo 0 %] oo 4 0 0
a0 I -
= 0 aj:'zalw} 0 ° _&lg— (‘)2
-0 0 o‘j::sc'tlw1 0 (_w‘;lg_
[0 602' 0
o sbiEs o | (o

The skew symmetric matrix of Step 7is

e T 0 0 0
(mwe) = 0 0 —wf . (498)
0 wf O
Now we compute R as defined in Step 8§,
eT e el
ot we a‘a
R = QeJeQe eTaeT( ol e )a
0 0 0 0 0 0
=10 by 0|+]0 ‘a‘} 01,
0 0 bs3 0 0 =
- o)
(0 0 0
=10 422 0}, (4.99)
|0 0 733
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where we have

wy wy
[ —Jl'zzwf’ and s = o — Jl'sawf' (4.100)
Note that these are not the same as the 77, and 742 terms which appear in Krishnaprasad
& Marsden [1987].
We can now compute

e2

")/337‘2 0 0
ST(r*)RS(7°) 0 0f, (4.101)
0 0
ST(r*)RS(m®) = 0, (4.102)
’722m§
ST(m®)RS(m®) = , (4.103)

From this we can compute the matrix AT(s)A(s) in (4.54), note that it has only two
nonzero elements. These correspond to second and fourth diagonal elements. Hence,
AT(s)A(s) is a diagonal matrix and the nonzero eigenvalues are these two elements. As
in the previous example we will use the modified bound described in Remark 3.

We can construct the D’ matrix in (4.64)

p;l—'y33 foL rs2 ds 0 0 0 0 0
0 b 0 0 0 —wt
D' = 0 0 43! U wt 0
0 0 0 (Fp)ke—v22 [ m52ds 0 0
0 0 0 (F)k 0
0 —w; 0 0 0 Gprk
(4.104)
To assure that the D’ matrix is positive definite we require
1 L
— > pA/ % ds, (4.105)
’733

_— / ms§ (4.106)

and
( ) > (w5)?, (4.107)
( ) > (w5)’. (4.108)
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These conditions are exactly those of (5.14) in Krishnaprasad & Marsden and they
assure stability about the equilibrium which also satisfies (4.92).

Finally a remark about the difference between Krishnaprasad & Marsden and our
development. If we integrate the matrix we call AT(s)A(s) then the elements of the
integrated matrix would correspond to vz, and ; in the paper of Krishnaprasad and
Marsden. This suggests modifying the procedure in the previous section to look at the

eigenvalues of the integrated matrix rather than integrating the eigenvalues.

4.4. The Energy-Momentum method

In the previous case we were able to find a Casimir and exploit the freedom it gave
us to establish positive or definiteness as a test of formal stability. Suppose however we
were unable to find a large enough family of Casimirs, or suppose we were unable to find
any Casimirs at all. In fact, such situations exist. At the present no Casimirs are known
for the convected representation of a geometrically exact rod (Simo [1985]). A similar
situation exists for the case of a compressible plasma described in spatial coordinates
(Marsden, et. al. [1981]). In these cases we can employ a more general method known
as the energy momentum method.

The energy momentum method deals with the dynamic stability of relative equi-
libria. In what follow we will describe this method, give a simple example, and discuss
its relationship to the energy Casimir method. Subsequently, we will apply this method
to the example of the linear extensible shear beam. The reference for this section is
Simo, Marsden, Posbergh, Krishnaprasad [1988]). Crucial to an understanding of this
method is the idea of a momentum map which we described in detail in section 2.7 (see
also Abraham and Marsden [1978], section 4.4).

As in section 2.7 we assume that G is a Lie group with associated Lie algebra G. We
assume that G act on the manifold P. We can then define the equivariant momentum
map for the action

J: P —G*.

From corollary 4.2.11, p.283 in Abraham & Marsden [1978] we have that if G acts on

T*Q by cotangent lifts from @, then an equivariant map always exists and is given by

J(E)aq) = (@q,€0(a)),
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where ay € T;@Q) and &g is the infinitesimal generator of the group action on Q (see also
Abraham & Marsden, p. 285). Here J is as defined in section 2.7.
The following fact is fundamental to the energy momentum method. (for a proof

see Simo, Marsden, Posbergh, Krishnaprasad [1988].

Fact. A point z. € T*Q is a relative equilibrium of the dynamical system if and only

if there exists a £ € G such that 2, is a critical point of
Hf =H- ‘](E)a

(i.e, 6He(z) =0).

This result, due to Souriau, Smale, and Robbin is proposition 4.3.8, p. 307 in
Abraham & Marsden.

For the energy momentum method we will examine the definiteness of the second
variation of H¢ at a critical point. We will need to place certain restrictions on the
variations we use to explore the definiteness of 6% H¢(z).

The first restriction is that for 6z € T, P, we require dJ(z.) -6z = 0. Thus, the
variations must keep us on the constraints. The purpose of this restriction is to assure
that we only look at variations that lie in the submanifold corresponding to a fixed value
of the momentum map.

The second restriction takes into account the symmetries of the problem. Recall
that G, is the isotropy subgroup of p € G* with respect to the coadjoint action (see
again section 2.8). Therefore, denoting a fixed value of the momentum as p. = J(2.),
each element of G, corresponds to those elements g € G whose coadjoint action leaves
the momentum unchanged. We denote the Lie algebra of G, by G, (ze).

From these two restrictions the only variations we allow in checking the definiteness
of 62 H, take values in ker dJ(2.)/G,, (ze). In fact under suitable conditions this space is
isomorphic to the tangent space of the reduced manifold P,, = J~!(u.)/G,, obtained by
symplectic reduction. Thus, we are really examining the definiteness of a Hamiltonian
H,, induced by H on the reduced space P,,.

The energy momentum method can be summarized as follows;

(i) Choose an element £ € G such that for an equilibrium point 2., we have 6 H¢(2.) =

0.
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(ii) Choose a linear subspace V of T}, P such that for all 6z € V, dJ(2.) -6z = 0 and
V complements G, in kerdJ(z.).

(iii) Test the definiteness of the second variation of §2 H¢ with 6z restricted to lie in V.
We reiterate, these these three steps are used to establish formal stability. As with

the energy-Casimir method we need to use convexity estimates in a subsequent step to

establish nonlinear stability.

44.1. The Rigid Body Example Revisited

We can illustrate this procedure with a simple, rigid body example (compare with
the earlier energy Casimir example). If we consider the rigid body again we now write
the Hamiltonian in the unreduced spatial representation. (although we have reduced to
the center of mass).

H(m,A)=im -1 (4.109)

Here  is the spatial angular momentum and I is the time varying inertia matrix of the
rigid body. We append to this a linear function of the momentum and then proceed to

take the first and the second variations. Define
He=in . I7ln - ¢ 7 (4.110)
For the first variation
6He =T - bn+ (I ' x w)- 60+ £ - m, (4.111)

where we have used I"! = AJ"1AT, and 6A = 60A. Thus, to satisfy 6H; = 0 we

require that at an equilibrium;

IDlw, =€, (4.112)

ID'7, x 7, = 0. (4.113)

Note that the second equation can be written IDlwe = A1z, where X is a scalar. Those
values of A satisfying this equation correspond to the principle values of inertia while
the corresponding eigenvectors are those m. which satisfy (4.113). The first equation
identifies & with the axis of rotation for an equilibrium.

From the condition dJ(z.) -6z = 0 we require §7 = 0 This restriction will assure

us that the variation we use to test the definiteness of the second variation lie in the
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submanifold ker dJ(z), or for a fixed momentum g, J=!(y). In addition the infinitesimal
generator associated with the action of SO(3) is in the same direction as €, therefore
we have the additional restriction that £ .68 = 0.

For the second variation, §2 H; we compute

8He = (I™Yom - 67 + (I — (17w )")60 - 6
+(=#I + (I7w) )67 - 60 + (7(I7'm) — #171%)66 - 60. (4.114)

However, since we require 67 = 0 we need only check the definiteness of the quantity

8 Hey| = (Fe(I7'me) — 7. I71%,)60 - 86,

e
at an equilibrium subject to the restriction 66 - ¢ = 0. Using the equilibrium conditions
we check conditions such that

Ief'f

(‘ll'e X 50) [—”—&'HT

1- Ie] (e x 60)>0, or <0, (4.115)

subject to 60 - & = 0.
Clearly this will be satisfied for the largest or smallest eigenvalues of I, since these
are the maximum and minimum values of the first term in the brackets. This is in

complete accord with the classical result and that of the energy-Casimir method.

4.5. More Examples

In this section we will use the energy-momentum method to reproduce the the sta-
bility criteria we found for the linear extensible shear beam at the nontrivial equilibria.
In contrast to the development in that section where we used convected variables, for
the energy-momentum method we work in the spatial representation,

The Hamiltonian for the linear extensible shear beam in the spatial representation

is

H=K+V,
L L ad) a¢
=11"11r.1r+l/ e 2ds+l/ C—= . —=dS, 4.116
2 2 A Pa ”p” 2 0 aS 88 ( )
where 7 is the spatial angular momentum associated with the rigid body; p is the

momentum density of the rod, and ¢ is the configuration variable (line of centroids). We
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also have I = AJAT, the time varying inertia matrix of the rod, and finally C = AKAT,
the time varying matrix of elastic coefficients. Note that for the linear extensible shear
beam A is independent of S, thus A(S,t) = Ag(2).

The momentum mapping in this case is J(§) = £ - & where

L
a=7r+/ P X pdS.
0

Thus we define
He=H - J(E),

and proceed to take the first and second variations.

Rigorous stability involves a convexity estimate on the second variations. In what
follows we shall restrict ourselves to a formal stability analysis by requiring definiteness
of the second variation for stability.

In general the first variation of H — J(§) is formally computed by use of the varia-
tional derivative relative to the Ly([0, L]) duality pairing. The computation is performed
by taking the configuration (¢, A), and the momentum (g, 7) as the basic variables, and

using the chain rule.

4.5.1. Inertial Terms: First Variations

In computing the first variation of & we need to recall that by definition I = AJAT
where J , is the (time independent) inertia of the cross section. To compute the variation

of the rotation field, we use A(¢) = exp(66)Ao to obtain:

sa=2] (1+ebb+..)A =304, (4.117)

af e=0
thus

§T7Y = 6AJAT + AJSAT,
=661°1 - 17160. (4.118)

Using this result, we obtain:

L
0K =1 xw - b6m + #66, - I 7 + / pap-épds,
0

L
=I'n.ém+ (I ' x 7)- 660 + / palp - 6pdS. (4.119)
0
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4.5.2. Potential Energy Term: First Variation

We consider constitutive equations expressed in the convected frame. For the linear
extensible shear beam we need only consider the strains associated with shear and
extension. In order to compute the variations with respect to the configuration variables

we will need to recall that the convected strain is the pull back of the material strain,

99
T
T=ATo%. (4.120)
The first variation of this term can thus be expressed as
§V = / 6T dS. (4.121)
We now use our definitions for the perturbed configuration to compute éT;
6T = 9 r.,
86 =0

_9 T w1, 0P 354)

- 66 €=0A exp(€50) (aS )’

_9 T, ATsAT 90

_&E:O(A + €A 66 +...)( +€as ,

_ 90 706 T Ta¢ 35¢

= 5 e—o(A +eAT (66 35+ )+ s

= AT[66¢ - 60 x a"l’] (4.122)

05

Since 2 T AT—E the variation for the potential energy term can then be written

op 066 0
/ (G- (G5 + 55 X 80)ds. (4.123)

Note that we can integrate by parts using the boundary conditions on é¢, and 66 to

obtain
6V = / { [¢' ] .60 + aas g’% 5¢} (4.124)

Recall that (in chapter 2) we defined n = -g—%. For the linear extensible shear beam

n = C¢'.
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4.5.3. The Momentum Term: First variation

The first variation of the momentum term is computed

L
6J(£)=£-(67r+/0 §é X p+ ¢ X 6pdS),

L
=£-6«+/0 (px £)-66 + (€ x §) - 8pdS.

4.5.4. Summary of the First Variation

Combining the above we have for the first variation of Hg;

He=(1"'mw+ &) - dn+1'mw x m)- 66,

L
+/ (p3'p+E X @) - 6pdS
0

L 822/)
+ [ 55
oy 0¢

+((I'17rX7r)+/ (——X——dS) 6.

(4.125)

(4.126)

Here we have used the fact that since A is independent of S, §8 is also independent of

S and consequently 60 = 68, for all .

From the above we obtain the four equations satisfied by an equilibrium

palp =€ X @,
I'lx = ¢,
fé]
pPx€=33 @)
L 64’
-1 _ vy
IT'exn = Anxas.

4.5.5. Second Variation

(4.127)
(4.128)
(4.129)

(4.130)

Next we compute the second variation of the above quantities, that is 8K, §°V,

and 62J(¢). This will be the basis of our subsequent stability analysis using the Energy-

momentum method. Note that in this section we denote the second variations by over

bars, thus é= is the variation of 7 in taking the first variation of H¢ while é7 is the

variation that appears in taking the second variation of H,.
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The computation of the second variation begins with the expression for the first

variation (3.3). By the directional derivative formula

8K = (I Yew - 67 + (I % - (I7'%)")66, - 67
+ (=7 4 X7 ) )67 - 600 + (17 w) — #I71%)66, - 66,
L
+/ PAlép - 6p—~E X 6 -6p—E X 6¢-6pdS + 62V. (4.131)
0
We can complete a square to eliminate p, define

1
2

L
S=llpa®6p - pi(€ x 69)|".

Then
K = I Yom 67+ (I % — (I717))66, - b7
+ (=#I 4 X7 7))67 - 600 + (R(I71w)" — #171%)66, - 66,

L
+ 5+ / pall€ x 6¢)|2 dS + 6°V. (4.132)
0

4.5.6. Potential Energy Term

The computation of the Potential term begins with the equation for the first vari-
ation of this term (3.11). Thus,

L
82V = / (C8¢' + C(¢' x 68) — C¢' x 80) - 6'
0
+(C¢' x §¢') — (¢’ x Céd')
4+ Co' x (¢' x 60) — (¢' x C(¢' x 60))-60'dS. (4.133)

If we define the configuration dependent operator

and

0 -n
= 1, 4.134
B=[y 2] (139
then (4.133) can be written in the form

82V = /OLE(Q) [6&%’] .CE(®) [56‘2'] dS+/OLB [‘;‘g] : [‘;"g] ds, (4.135)
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where the first integral is the material component of the tangent stiffness matrix while
the second term gives rise to the geometric part. This is a special case of a more general
expression which arises because of the nonlinear nature of the configuration. (see Simo

and Vu-Quoc [1986).

4.5.7. Stability Analysis

In this section we will ascertain the stability for particular equilibria and relate
it to the earlier energy-Casimir results. This section should be compared with the
energy-Casimir analysis of the same equilibria in section 4.3.

In order to relate this to our earlier results we first pull back the spatial representa-
tion to convected coordinates. In the case of the linear extensible shear beam this will
simplify our expressions, we note that in general this is not necessarily true. However,
whether in convected or spatial coordinates the crucial fact to be exploited is that A
does not depend on S.

Recall that in this case

N = ATn, = AT&’
R=AT¢, 6R = AT (¢ x 60 + 6¢),
R' = AT¢', 6R' = AT(¢' x 66 + 6¢").

we also define 6T = AT6§6; and note that it is independent of §. Thus, in terms of

convected components we can write the second variation in the form

L[K 0 -N_ sR'] [6R/
62HJ=/ 0 pafl  —pabR | |6R|-|éR | dS
© [N psRE -R'N-p RER] | 6T §T

+ €[(16)" ~ I§)6T - 6T.
Consider the components of the second variation which involve §R'. We can obtain

a lower bound for this component by a term involving variations in §R., and 6T by

application of the Poincaré inequality and integration by parts. Thus,
L L
/ K6R'-6R' + 2N6R' - 6T dS > / (%)2K6R -6R - 2N'6R - 6T dS,
0 0
where use has been made of the boundary conditions. The second variation is now

bounded below
LI(EK +pafE N —pa€€R SR] [6R
sz [ ek aeeen] Lor) Lo 4
Ho2 |01 ZR 4 puRE RN - p,REER] [6T] 6T
+ £[(T1€)" — I€}6T - 6T.
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We now consider a specific equilibrium subject to appropriate constraints on the
variations. For the equilibrium we are concerned with , the configuration rotates about
a principal axis perpendicular to the appendage, what we referred to as a nontrivial

equilibrium in an earlier section. In this case we have;

0

, R = (4.136)

o €
no o

In this case the we have

S PPN
N(8) = N(0) + /0 p4€ER dS,

0
=N(O)+{ 0 },

1 2
—3paw?S?

to satisfy the boundary condition at the tip of the appendage, N(S) = 0, we require

0
N(S) = [ 0 } .
—3paw’(L? - §%)

We will use the fact that integration by parts shows
L L
/ 1paw(L? — §%)dS = - [ paw?st dS.
0

Thus we have the following components in the expression for the second variation

.a —paw’® 0 0 . o 0 paw?s 0
paké=| 0 0 0 |, pabfR = —ps(REHT=10 0 0f,
0 0 —paw? 0 0 0
. man 0 0 0 . . (jaz — jaz)w? 0 0 1
paREER = |0 —paw?s® 0, E[(1€)-1]= 0 0 0 )
0 0 0 0 0 (jo2 — j11)w? |
. lpaw(L*=s*) 0 0 X 0 —2paw?(L* = s*) 0
R'N = 0 0 0|, N=|{1ps?(L?-s?) 0 0
0 0 0 0 0 0]

We will also assume that K = diag(GA;, GAz, EA).
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Note that our restrictions on the variations require §7; = 0 since this direction is
the same as that of £, the infinitesimal generator of the symmetry group.

One can now check the definiteness of the resulting quadratic form by verifying
that all the submatrices along the diagonal associated with unrestricted variations are
positive.

Thus for the diagonal elements we require

T2
(ﬁ) GAy > paw?,
N

(ﬁ) EA> paw?,

The conditions correspond to our earlier conditions and are related to the frequency of

the lowest mode. The conditions
L
Ja2 > Jas +/ pasiw? ds,
0
Jo2 > J11,

can be identified as the classical, rigid body conditions on the extended inertia dyadic.

In addition, we have the condition arising from the prescence of the off diagonal
terms due to N. In this case we consider the second variation arising from variations
in 8Ry, and 6T. We can complete a square in this case to find conditions which assure

this term is positive. Thus

L
/ (%)ZG%&R% — 2paw?s6Ry8Ty dS
0
L
+ (jaz2 — Ja3 — / pA52 dS)wzéTl,
0

L
T 1 2L _1
= = [T NG G 6Rs ~ (5)(G ) Fpas?st | dS
0 ™
L 2L L
- / (-;r—)Z(GAz)—lp?4w4325T12 dS + (J22 — J33 —/ pA82 dS)w26T12.
0 0
This term is never less than zero if
T \? . . By Eoo,
(—') GAz + ja2 — J33 —/ pas”dS >w2/ pas”dS.
2L 0 0
This of course corresponds to equation (4.106) in our earlier example.
For the case of the linear extensible shear beam we have been able to exploit the

fact that A is independent of S. In the general case of the geometrically exact case this

is not longer true and the problem is significantly more complicated by this fact.
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CHAPTER FIVE

CONTROL OF FLEXIBLE AND MIXED STRUCTURES

In this chapter we formulate the control problem for a particular class of mixed
structures. In particular, we will address the control of models for which the control is
located on the rigid body and the sensor is located at the tip of the attached flexible
appendage. Several models for such configurations were developed in chapter 2, in par-
ticular we will consider linearized models in the frequency domain and approximations

to them by a system of N rigid bodies.

5.1. Control by input-output linearization

Exact input-output linearization involves the use of a static feedback to modify
the input-output behavior of a nonlinear system so the response appears linear. This
is in contrast to approximate linearization techniques which approximate the nonlinear
behavior of a system by the truncation of a power series. Generally, we would want
to linearize a system in order to obtain the advantages of a linear system, particularly
in regard to control system design. The structure algorithm of Silverman [1969] is the
basis of the input-output linearization in Isidori and Ruberti [1984], and Isidori {1983].

The use of input-output linearization as a practical method in control system design
has several potential drawbacks. Since the underlying system remains nonlinear care
must be exercised in keeping the internal states from saturating. More serious is the
problem of inaccurate modeling. Input-output linearization is based on exact knowledge
of parameters in the model we are linearizing. In the absence of any robustness theory
there exists the potential for serious problems if the model is inaccurate. Recently,
techniques based on adaptive control theory have been applied to this problem in the
work of Sastry [1986].

Control by exact input-output linearization is related to the more difficult problem

of exact linearization. The problem of exact linearization for a state space model was
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first proposed and solved for the single-input case by Brockett [1978]. The solution
for multi-input systems is due to Jakubczyk and Respondek [1980], while the indepen-
dent work of Su [1982], and Hunt, et.al. [1983] includes a constructive algorithm for
determining the static feedback. For an application of the technique to the design of

automatic flight controllers see Hunt, Su, and Meyer [1983].

5.1.1. Exact Input-output Linearization, Finite Dimensional Systems

The basic idea behind exact input-output linearization is to require a linear re-
lationship between the output measurements and a new control input. Subsequently
one inverts the system between the outputs and original inputs to find the linearizing
feedback. This idea will be made clear in the example below.

We consider nonlinear systems of the form.

B_ @)oo = 1)
t=0

with outputs given by the nonlinear mapping

y = h(z).

Here x takes values in some Hilbert space H and we assume y € IR®, and « € IR™.
We will consider such a system to have a linear input output behavior if the rela-

tionship between y and u can be expressed in the form

y(t) = y(t,20) + /0 K(t — r)u(r) dr, (5.2)

where k(¢ — 7) is the first order kernel of the Volterra series associated with (5.1) and

(5.1) (see Brockett [1977].) In general we have
k(t—7)=w(t,7,20) (5.3)

so that a necessary and sufficient condition for the input output behavior to be linear
is that the first order kernel of the Volterra series is dependent only on the difference of
t — 7, and independent of . For the system we consider the first order kernels can be

written in terms of a Taylor series,
o0
w(t, 7, 2) = Z Tk(t — 1),
k=0
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where

Ty = LyL5h(z).
In this case (5.3) is satisfied if, and only if every coefficient T in the Taylor series is
independent of @. Thus, given a system one first checks if it is linearizable by a simple

coordinate change. This is checked by verifying that every T is independent of z.

Should this not be the case we can next ask if there exists a static feedback of the form
u = a(z)+ B(z)v,

such that with this feedback the input output response can be written in the form (5.2).
It is shown in Isidori [1985] that there exists a static, nonlinear feedback if and only if

the formal power series T(s, ) defined as
(o o]
T(s,z) = Z Ti(z)s 51, (5.4)
k=0
is separable. By separable we mean that T(s, ) can be written
T(s,z) = K(s)R(s,z), (5.5)

where

K=Y K7, R(s,z)=R_1 + > Ry(s)s™",
k=0 k=0

with R_; invertible. (see Isidori [1985], Chapter 5, Theorem (1.11)).

If the formal poWer series is separable then a systematic procedure for the construc-
tion of «, and B is described in Isidori [1985]. Central to this method is the so called
“structure algorithm” first described by Silverman [1969] which enables us to invert
the system as a first step to finding the linearizing o, 8. For a complete discussion of
the procedure we defer to Isidori [1985] Chapter 5, section 1. Here we recall that the

linearizing e, and B are given by

[LgT(z)]o(z) = —L;T(z) (5.6)
[L,T(2)]B(z) = [1rq-1 , 0] (5.7)

where LT is an 74—y X m matrix of rank r_;, and LsT is a r,_; dimensional vector.

We compute from the the algorithm in Isidori the value of r,_; and the vector T'.
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5.1.2. Example: The Rigid Body

We can illustrate the technique of exact linearization with the example of a rigid
body which is controlled by an applied moment. If we assume that we have available
measurements of the rotation rate then the equations describing the dynamics and the

output take the form

II=J"'IIxIT+M, (5.8)

Y=J"1I, (5.9)

Here IT € IR}, M € IR, and Y € IR®. Physically these correspond to the angular
velocity, and external torque, and the angular velocity of the body.
This system is straight forward to linearize and we can do this in an obvious fashion

as follows. If we differentiate Y we get

Y = Lsh,
=J'J'D x I+ M). (5.10)

If one sets Y = V, then Y is linearly related to V. Now assume V is our new

input. Solving for the old input M, in terms of V'

M=-J'IIxHI+JV,
= a(z) + B(z)V.

Clearly, a and B3 are the elements of the static feedback which linearize our system.
Of course this problem could also be solved by the Isidori’s method using the

structure algorithm. In this case we note that,

To = .Lgh = J_l,
T, =L, L;h=—(37 1) +3710,
so that the system is not linearizable by a change in coordinates. Consequently, we

proceed to construct the linearizing feedback using the structure algorithm. The ma-

trices below correspond to the notation in Isidori [1985]. In this case the construction
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is almost trivial. Since rank(Tp) = £, we terminate with the initial conditions. We set

P; =1,Vy; =1, and 73 = Lsh. In this case the matrix ['(JT) = v; and we have

L,T = J-t,
L;T =371 x ).

The linearizing feedback can then be computed from (5.6) and (5.7) which in this case

are

I o) = -3"Y37T x ),
J—lﬂ(ﬂ) = —1’

from which

M = a(z) + B(z)V,
=-J I xI+IV,

in agreement with our earlier result.

The technique of linearizing equation (5.8) by canceling the nonlinear terms aris-
ing from the cross product has been suggested for the control of large angle multi axis
slewing of spacecraft. In Lindberg, Fisher, Posbergh [1985] equation (5.8) was used
as an idealized model of a (assumed) rigid body spacecraft. In this case the applied
moment was provided by momentum wheels on board the spacecraft while angular rate
measurements were provided by gyroscopes. To obtain a linear model for a subsequent
control design the angular rate measurements were used to construct a linearizing feed-
back exactly as in this example. Of course for a real design numerous other issues, such

as robustness, need to be addressed.

5.1.3. Exact Linearization of N-body approximations

In this section we apply the algorithm of Isidori to compute the input-output lin-
earizing feedback for particular examples of the N-body approximation of section 2.5.
The exact input-output linearization problem for an N-body chain formulated in a

Hamiltonian framework was solved by Sreenath [1987].

Two Body Approximation
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Figure 5.1. Two Body Approzimation.

We next proceed to use the structure algorithm described in Isidori to find the
exact, linearizing control for the N body approximation of section 2.5. We will first
consider the case for N = 2, this will give us a great deal of insight into what happens
in cases for larger V.

For the two body approximation we consider the configuration shown in figure 5.1.
Our notation will be that introduced in section 2.5. In this case we have two rigid
bodies connected by a single elastic joint. The centers of mass are located at (z1,y1)
and (z2, y2) respectively.

To find the dynamics we can use (2.91), (2.94), and (2.96) or proceed to rederive
these equations. For the sake of completeness we will outline the derivation which the
interested reader can compare with the more general case in chapter 2.

For this two body system we have a Lagrangian which is;

= dmy(s? + 93) + 3Nhé
+ Imy(33 + 93) + Ly
— 3k1(d2 — 1) (5.11)
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as well as the two constraints

Ty = 71(1 — €1) cos(¢y) + o€z cos(Py) + 21, (5.12)
Y2 = r1(1 — €1) sin(¢1) + o€z sin(2) + 1. (5.13)

Using (5.12) and (5.13) we can write the Lagrangian in terms of the four variables z,

Y1, ¢1, and ¢; and their time derivatives. The equations of motion are then give by

. d(@L) oL (5.1

Lagranges equation

~o\9) Bz

For our two body system this gives the four equations

0 = (m1 + m2)zy + me{-71(1 — 1) cos(d>1)qj>% —7(l~¢€) sin(d)l)%l
— To€ cos(qﬁz)(f'% — To€y sin(¢2)$2}, (5.15)

0 = (my + ma)s + ma{—r1(1 — e1) sin(¢1)3 + r1(1 — €1) cos($1)é
— roey sin(py) @3 + o€z cos(a)ds }, (5.16)

0 = mp{r}(1 - €&1)*¢1 + rira(1 - e1)ea sin(g1 — 2) 3
+7173(1 — e1)es cos(d1 — $2)éa )}
+ Ny — k1(¢2 — ¢1) + mari(1 — &)(Z1sin(é1) + § cos($1))5.17)
0 = my{rirs(1 — e1)ez sin(gz — 61)¢%
+ 1172(1 — €1)ez cos(d1 — 2)1} + T35 o
+ Ipda + ki(d2 — 61) + maraea(— &1 sin(¢y) + i1 cos(¢1)). (5.18)

In what follows we will assume that my > m2 so that we can consider the center
of mass of the entire configuration to coincide with the center of mass of the first rigid
body. In this case we can assume %#; = 0, and §j; = 0 (divide (5.15) and (5.16) by my
and let my — oo0.) We are left with (5.17) and (5.18) in which we have set #; = 0,
ih = 0 describing the dynamics.

These equations can be written as the (nonlinear) matrix differential equation

0 = I(¢1,¢2) [z;] + (1, ¢2) [ﬁ%} + K [zz} ; (5.19)
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where we define

[ t(l—ea)my+ 1y T172(1 — €1 )€z cos(Py — ¢2)ms
I(¢1,¢2) = e ,
| 7172(1 — €1)€2 cos(py — $2)ma raeyme + Ip
o) = - 0' r172(1 — €1 )€z sin(¢y — ¢2)m2} ’
| 7172(1 — €1)e2 sin(¢z — ¢1)ma 0

k1 -—kl
K= .
-k k
We note that I{¢1, ¢2), is a symmetric, positive definite matrix being the sum of
a diagonal matrix of inertia terms and a positive semidefinite matrix. Furthermore,
Q(¢y, ¢2) is skew symmetric and K is positive semidefinite.
The control problem associated with this system can be formulated as follows; we

assume a control torque u(t) is applied to the first rigid body. Then, defining w; = ¢4,

wy = (f)g (5.19) can be written as the nonlinear first order equation

d}l wh 0
b | _ w 0
@i B f1(¢1,¢22,w1,w2) * s, u(t), (5.20)
d)2 f2(¢1,¢2,£01,&)2) 0

where we define

[f1(¢1,¢2,w1,w2)
fa(1, ¢, w1, w2)

B # i
= =17 (1, $2)% o1, ¢2) bt —I (¢ d)K ¢

2

} . (5.21)

2

We consider two outputs, the first 23, is base rotation rate. The second z; is the
acceleration at the center of mass of the second rigid body in a direction perpendicular

to the centerline. Thus,
21 =W, (522)
¢2
Zy = [Tl(l - €1)Sin(¢2 - ¢1) 0] [d)%:l
2 v
+ [r1€3 cos(p2 — ¢1) T2€2] [g;] . (5.23)

For the first case we consider the construction of the linearizing static feedback by the

method described in Isidori. We first need to check to see if the system is linearizable
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by a coordinate transformation. Thus we first compute,

To = Lgh,
= bla
Ty = L,L;h,
dfi
= —b
awl 1

_ —r3r2€l(1 — €2)? cos(¢y — ¢a)mE sin(¢y — o )y
(I + r2€ma) (I + r2(1 - €2)?m2) — 7323 (1 — €2)2 cos(dy — $2)mg

by.

Since the partial derivative in the the last expression is a function of the state variables
we conclude that the system is not linearizable by a coordinate transformation.

We now proceed to apply the structure algorithm. Since rank(Ty) = 1 the rank of
h(#1, $2,w1,wz), we terminate with the initial conditions. We set Py = 1, V; = 1, and

71 = Lgh. In this case

Lgyy = by,

Lf71 = f1(¢1,¢>2,w1,w2),

and the linearizing feedback is computed from

[L97l]a(¢17¢2,w1,w2) = —Lf’)’l,
[Lg7l]ﬂ(¢1,¢2,W1,w2) = 1,

from which

U(t) = a(¢1,¢27w17w2) + ﬂ(¢1,¢2,w1,w2)v(t),
= —b7" fi(81, B2, w1, w2) — b Mo(2).

Three Body Approximation
For the three body approximation we again assume that the center of mass of the
first link is fixed in inertial space. Therefore, as in the previous example we will set

Z = 0, § = 0 and obtain from (2.91) three equations of motion.

0 = (msy 4+ ma)(1 — €)*r2 ¢y + (maez + ma)(1 — €1)7175 cos(¢z — b1)ba

139



+ ma(1 — €1)ears73 cos(ds — ¢y )3
+ (maez + m3)(1 — € )r17a sin(a — B1)P2 + ma(1 — €1 )eary73 sin(¢s ~ $1) 92
+ Lidy — ki(¢2 — 1), (5.24)

0 = (moez + m3)(1 — €1)r173 cos(dp — ¢1)é1 + (mae} + ma)ridy
+ maesr173 cos(Bs — 1)
+ (maez + m3)(1 — e1)ryrasin(@1 — ¢2)dt + maearirg sin(ds — ¢1)8%
+ Ioda + ka(¢2 = 61) — ka5 — 62), (5.25)

0 = ma(1 — €1 )esr173 cos(¢s — $1)b1 + maearirs cos(ds — ¢2) s
+ ma€3rigs
+ ma(1 — e1)esr1rs sin(@r — ¢3)d} + maesrarssin(gy — ¢3)é5
+ Isgs — ka(2 — ¢3)- (5.26)

As before we can rewrite this in the form of a nonlinear, matrix differential equation.

If we define the symmetric matrix,

I(¢1,¢2,¢3) =
(motm3a)ri(l—e1)?+ L  (mzez+ma)(1—e1)rirzcos(dz—d1) ma(l—e)earirs cos(dps—ob1)
(moei+m3)rit+Ip maearyT3 cos(P3—¢z) )
maesra+Is

and the skew symmetric matrix,

Q(¢1, b2, $3) =
0  (moeat+ms)(1—€1)rirosin(da—¢1) ma(l—e;)esrirasin(pa—o1)
0 mM3€E3TraTs sin(¢3—¢>2) )
0
ky —kq 0
K= |-k kit+k -k
0 —ks ko
Equations (5.24), (5.25), and (5.26) can now be expressed
1 ¢ 2}
0=1(é1,d2,¢3) | fo | + 1,2, 03) | $3 | + K | 2] - (5.27)
¢3 3 é3
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Again we note that I(¢y, ¢2), is a symmetric, positive definite matrix, Q(¢1, ¢2) is skew
symmetric and is K positive semidefinite.

Again we consider a control torque u(t) which is applied to the first link with a
gain of b;. Measurements are either of base rotation rate or tangential tip acceleration

of the third link. These measurements will be
21 = QZ)I’

z2 = — sin(¢a)E1ip + cos(b3)Prip,
7o sin(@s — ¢2)@2 + €171 sin(ds — ¢, )
+ 7‘353 + 72 cos(¢s3 — ¢2)<£2 + €171 cos(¢3 — ¢1)$1-

For the first case we consider the construction of the linearizing static We can recast

this in the form a system of first order differential equations;

'(l}l i w1 0
¢?2 Wy 0
¢3 | _ w3 0
il | A(dr,d2,w1,w2) + b u(t), (5-28)
w2 fo(d1, d2, w01, w2) by
[ w3 fa(#1, ¢2,w1,w2) b3

where we define

fi(é1, ¢2,w1,we) ¢} )
fa(é1, @2 w1,w2) | = =17 (@1, b2, 63) U1, b2, 03) | 65 | — 1(b1, b2, 83)K | B2
f3(¢1, b2, w1, w2) 3 #3

We consider exact linearization by static feedback when the output is base rota-
tion rate. We first need to check to see if the system is linearizable by a coordinate

transformation. Thus we first compute,

To = Lgh,
= b;.
Ty = LyLsh,
9fy
= ——b;3.
(?wl 3

Since the partial derivative in the the last expression is a function of (¢1, ¢2,$3) we

conclude that the system is not linearizable by a coordinate transformation.
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We now proceed to apply the structure algorithm. Since rank(Tp) = 1 the rank of
h(x), we terminate with the initial conditions. We set P; =1, V; = 1, and 1, = Lsh.

In this case

Lyvy, = by,

Ly = fi(é1,¢2,w1,w2),

and the linearizing feedback is computed from case are

[Lomi]e(x) = =Ly,
[Lym]B(z) = 1,

from which

u(t) = a(z) + B(z)v(t),
= =b7" fi($1, B2, w1, w2) — by ().

Note that as in the previous example, while we can find a linearizing feedback it de-
pends on knowledge of all the joint angular positions and velocities. Thus, this feedback

requires a complete state vector to compute the feedback.

5.2. Control by frequency domain methods

In chapter 3 we derived some transfer functions associated with several models of
a rigid body attached to the base of a nonshearable, inextensible beam. In this section
we will use frequency domain techniques to design controllers for them.

We will restrict our attention to the methods of control system design related to H*°
theory (Francis [1986]). This methodology rigorizes the more classical techniques which
were used extensively in the decade and a half after the second world war (Horowitz
[1963], Truxel [1955]). More recently Zames [1981] and others succeeded in placing
much of this earlier methodology on a rigorous mathematical foundation. This rigorous
mathematical foundation together with modern computer aided design tools has brought
about the current renaissance of frequency domain methods.

While much of the current literature deals with finite dimensional systems we are

concerned with the more challenging problem of infinite dimensional systems. One
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approach to this problem is described in Flamm [1986] where the problem addressed
is the minimization of the maximum weighted sensitivity in the frequency domain of
a single input, single output linear time invariant feedback compensator. The plant
considered is a cascade of a rational transfer function and a pure delay. They were
successful in designing a rational finite dimensional compensator to control the plant.
Another approach, and the one we shall employ, is that of the L., methods pio-
neered by Curtain [1987], and Curtain and Glover [1986]. They consider the transfer
function describing the plant to be the sum of a finite and an infinite dimensional part.
They then employ Hankel norm approximations (Glover [1984]) to design for a prespec-

ified robustness margin, a finite dimensional compensator which stabilizes the plant.

5.2.1. The Methodology

The fundamental idea underlying the methodology of control system design for in-
finite dimensional linear systems as proposed by Curtain and Glover [1986] is to approx-
imate the an infinite dimensional system by a finite dimensional system and guarantee
that the subsequent control design is robust with respect to the modeling error arising
from the approximation. Fundamental to this methodology is the idea of a Hankel-norm
approximation for linear multivariable system and the associated L, error bounds.

First we define several of the quantities we will need subsequently. We will start
with the definition of a Hankel operator for a linear system. In this we will restrict our
attention to the class of spectral systems introduced by Curtain [1984]. Let H be a real,

separable Hilbert space and consider systems defined on this space of the form

z=Az+Bu; z(0) = zo,
y = Cz,
with A:D(A) — H a closed linear operator with compact resolvent whose normalized

eigenvectors form a basis in M. The operators B: IR™ — H, and C:'H — IR” are

assumed to be bounded.

Definition. The Hankel operator I': L3(0, 00; IR™) — L3(0, 00; IR™) for the spectral
system (A, B, C) is given by

(Tu)(t) = /0°° Cexp(A(t — o)Bu(o)do. (5.29)
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If we assume that sup(Re);) < 0 then exp At is exponentially stable and T is a
bounded map. It can also be shown that I' is compact with the consequence that it has
countably many Hankel singular values which are the square roots of the eigenvalues of
r*ri.

We will be interested in bounds on the Lo, norm. This norm is defined by

1
IMllo = sup  phax(M"(jw)M(jw)) (5.30)

we(—00,00
where pmax(M) denotes the largest eigenvalue of the square matrix M.
We now turn our attention to finite dimensional approximations of the transfer

function, G(s), and the Hankel operator I'. Recall that the n** order model approxi-

mation for the transfer function will be

" -
Co;B*¢;
G,(s) = 2 M, (5.31)
= s
where ¢;, ¢+ = 1,... are the eigenvectors of the operator A and X;, 7 = 1,... are

the corresponding eigenvalues. It is straight forward to show this truncation converges
(see Curtain and Glover [1986]). In this case we have an L., error estimate on the

approximation given by (see Glover [1984])

o0
1G(8) = Gu(s)llo € D 2mi, (5.32)
i=n+t1l
where _
|C¢:il|B*¢i
i = o 5.33
H = oRe (M) (5.33)
For a Hankel norm approximation we can do better, in this case it can be shown that
1G(s) = Gn(s)lloo € D m (5.34)
i=nt1

Again the reference is Glover [1984].

Model Approximation

We assume that we have an infinite dimensional model whose transfer function is

of the form
G(s) = Gu(38) + Gs(s). (5.35)

t We use * to denote Hermitian transpose
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Here G,(s) is the finite dimensional, possibly unstable component of the transfer func-
tion we want to control, G,(s) is a stable, infinite dimensional component of the transfer
function.

For the models we have developed in the previous chapters we have no poles strictly
in the right half plane. However, for undamped systems our poles lie on the imaginary
axis. In what follows we will restrict our attention to models with damping introduced
in the constitutive relations (see section 3.5.5). For these models we may want to ensure
that there are no poles with Re();) > —a, for @ > 0 (i.e. all the poles in the left half
plane are no closer than o to the imaginary axis. Thus, in this case we might choose
G,(s) such that it contains all A; with A\; > —a.

The strategy for the model reduction is as follows: First we determine the robust-
ness margin associated with G,(s). This will be the smallest Hankel singular value for
this system, i.e. Omin(Gy). It is known that there exists a controller which will control K
such that for all G, + A, with ||A||co < Omin(Gy) the system is stable. The next step is
to compute the optimal Hankel norm approximation such that |G — Glleo < omin(Gu).
In order that we might employ the algorithm described in Glover [1984] one frequently
first obtains a truncated realization of G,, which we will denote as GF, and such that
IGE - G|l < €& with € a very small value. The Hankel norm approximation G, of
GPR is then computed by Glover’s algorithm. In this case a suitable McMillan degree of
G, is chosen such that ||GR — G|leo < € and €; + € < Omin(Gy). Figure 5.1 gives the

block diagram of the control system we describe.

5.2.2. Discussion

As we have remarked above, the L, technique is applicable to our model of a rigid
body with an attached, inextensible rod with with rate damping, discussed in section
3.5.5. As can be seen from figure 3.2, all of the eigenvalues in the case of the example
in that chapter lie in the left half plane, except for the zero at the origin. A typical
control design for this model would be to move the zero at the origin into the left half
plane. If we recall that this zero physically corresponds to the rigid body mode of the
system, then our feedback controller would be designed to keep the angular position of
the beam fixed.

For this example we can identify G,(s), a single input, single output transfer func-
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Figure 5.1. Block Diagram of L., Design.

tion in this case as consisting of the pole at the origin and a finite number of the
remaining terms in the model expansion. The remaining terms define G4(s). In (5.35)

we therefore have

ag N an + bys
Gu(s) = — - 5.36
u( ) s +’;S2+2cwn3+w% ( )
and
00
ag a, + bns
Gu(s)==+ > = > (5.37)
s L5 8% 4+ 20wy s + Wi
where ag, and a, b, n = ... are constants computed from the model parameters.

For the first attempt at the design we can eliminate the Hankel norm approxima-
tion used by Curtain & Glover [1986], and consider an Lo, design based on a finite
dimensional model obtained by simple modal truncation. We note that control design
based on modal truncation has been used frequently in the past, see for example Hughes
& Skelton [1981].

Analytically the computation of the bound can be difficult, the relevant equations

for our model are (3.130), (3.131) and (3.132). While one can carry out the computations
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in principle, in general the usual practice is to resort to numerical computation and

choose the number of terms to retain on a heuristic basis.
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CHAPTER SIX

CONCLUSIONS AND FUTURE RESEARCH

6.1. Conclusion

In this dissertation we have explored some of the issues associated with the modeling
and control of mixed and flexible structures. In particular, we have dwelt at some
length on the problem of modeling and control of a rigid body plus attached, flexible
appendage where the motion is restricted to a plane. This problem has been motivated
by actual hardware configurations and we have attempted to relate our work to one
such configuration.

In chapter two we introduced the geometrically exact nonlinear rod models which
are the basic models used in our work. We showed that for the special case of a planar,
inextensible, nonshearable rod attached to a rigid body we get an integro-differential
equation which describes the dynamics. This equation is in fact a special case of Euler’s
elastica and we showed that by linearizing it in a nonrotating configuration we recover
the classical, Euler-Bernoulli beam equation.

We then showed that this rod model can be obtained from standard variational
methods. We also showed that this rod model represents in certain regards the limiting
case of a chain of rigid bodies.

In chapter three we turned our attention to the linearized models of the rigid body
plus flexible appendage. For this model, we found equilibria associated with simple
rotating and nonrotating configurations. For the equilibria associated with the rotating
configuration we showed that the linearization of our model correctly accounts for effects
such as stiffening which are frequently neglected in more ad hoc methods.

We next proceeded to obtain transfer functions associated with our model. The
transfer functions included such often neglected effects such as rotary inertia and damp-

ing. We showed that the transfer function associated with the rotating configuration
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could be viewed as one associated to a nonrotating system together with some pertur-
bation terms coming from the effects of the rotation.

In chapter four we turned our attention to the relative stability of a rigid body
with attached, flexible appendage. In the case of a linear extensible shear beam we used
the energy-Casimir method to find conditions assuring the relative (formal) stability of
the configuration. In particular, for any equilibrium we showed that relative stability
is determined by the positive definiteness of a certain quadratic form. Motivated by
issues associated with more general models we then introduced the method of energy-
momentum. Using this method we reproduced the stability results obtained from the
energy-Casimir method.

In the last chapter we turned our attention to the control problem. We first showed
how exact linearization could be used to linearize finite dimensional systems based on
the N-body approximations of the geometrically exact rod. The results were related
to an existing piece of hardware at the Intelligent Servomechanisms laboratory at the
University of Maryland. We also noted the several issues related to the exact lineariza-
tion of infinite dimensional systems such as the nonlinear model of the geometrically
exact rod. In the second half of the chapter we outlined the application of L., control
methodology to our models. Both approaches to control were based on finite dimen-
sional approximations to infinite dimensional models, an important consideration from

an implementation point of view.

6.2. Future Work

There are several areas of investigation suggested by this dissertation which need
to be further explored.

Other equilibria for geometrically exact models need to be explored. Nonlinear
effects play a crucial role in obtaining physically meaningful linearized models and also
for investigating stability. Furthermore, equilibria associated with geometrically ex-
act rods may be significantly different from those associated with nonexact models for
large deformations. Graphics and symbolic manipulation on modern AI and graphics
workstations may have a role to play here.

In chapter three we treated the model of the rotating configuration as a perturba-

tion of the nonrotating configuration. This approach needs to be explored more, both
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analytically and numerically.

Finally, we note that the approximation of infinite dimensional systems by finite
dimensional systems for control purposes is very common. In our case we used the N-
body approximation the basis of an exact linearization of an infinite dimensional system.
An intersting problem which this suggests is the formulation and solution to the exact
linearization problem for an infinite dimensional system. Is it the same as the limit of

the linearized systems based on the N-body approximations.
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